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Abstract 
The analytical approach is proposed to study the 

achromatic structures. The fully kinetic self-consistent 
time-dependent models are implemented in the approach. 
The method allows to predict the beam phase portrait 
behavior in magnetic fields of the structure with easy 
scaling and wide physical generality. The preliminary 
results of the method application for the bending magnets 
and the quadrupoles are presented. 

INTRODUCTION 
Achromatic structures are the important elements of the 

modern accelerator facilities [1-3]. The choice of suitable 
achromatic structures for the specific accelerator facility 
is a significant part of the facility research and 
development. The beam dynamic simulation with the help 
of numerous program codes (as example, [4-6]) is usually 
applied for this aims. In the case of multi-parameter task 
of charged particle beam formation with high intensity 
and high brightness the analytical approach is an 
attractive tool to describe the beam dynamics because it 
allows the task scalability and predicts the beam behavior 
with the most physical generality. Such an approach 
becomes possible, for instance, while using the self-
consistent time-dependent models [7-9]. These models are 
the modifications of well-known Kapchinsky-
Vladimirsky model (K-V model), which describes 
quasistationary continuous beam. In the paper presented 
the 2D and 3D models are used for the analysis of the 
beam phase portrait behavior in the dipole and quadrupole 
magnets, involved into the achromatic structure. These 
models are fully kinetic and time-dependent and 
correspond to uniformly charged intense beam both 
continuous and bunched. The models consider the 
continuous beam with elliptical cross-section and the 
bunched beam shaped as an ellipsoid with various 
relations between the semiaxes. 

MOTION IN BENDING MAGNET 
To describe analytically the motion of the beam with 

elliptical cross-section in the bending magnet the model is 
developed, corresponding to the uniformly charged beam. 
Some idealization of the task geometry is applied, 
namely, the bunch should have the most size in the 
coordinate direction corresponding to the direction of the 
magnetic force lines (2D approximation), and the 
magnetic field has a sharp edge, i.e. at this step the fringe 
fields of the dipole magnet are not taken into account. In 
addition, we assume the simple beam structure when it 

consists of one kind of the particle with the same values 
of both the charge and the mass.  

Let us begin from the case of non-relativistic and non-
intense or emittance-dominant beam. The approximation 
of uniformly charged beam moving in the uniform 
external field allow to write the invariant I for the linear 
equations of the beam particle motion: 
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where x,y – the coordinate axes, connected with the beam 
mass center and rotating with the mass center in the 
laboratory coordinate system, u,v – the auxiliary time-
dependent functions, C0 – the mean angular momentum of 
the particle, the dot means the differentiation with respect 
to the time. 

The kinetic distribution function f corresponding to the 
particle oscillations in the plane of the turn may be 
written as 

)1( −= If κδ ,                                   (2) 
 
where κ – the normalization constant, δ – the delta 
function. Such function automatically satisfies to Vlasov 
equation and really describes the beam with elliptical 
cross-section in the plane of the turn: 
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Here σ is Heaviside function, ε1 , ε2 – the values, which 

characterize the partial emittances of the beam in the 
cross-section, corresponding to the plane of the turn. 

Using the equations (1) and (2), one can obtain for the 
beam rms values: 
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where Rx and Ry – the rms values of the semiaxes of the 
elliptical beam cross-section, corresponding to the 
coordinate plane, connected with the plane of the turn.   

The equations obtained above give the possibility to 
estimate the effect of the emittance transformation in the 
plane of the turn and to determine the general factors 
affecting the phenomenon. 

Analytically estimated maximum value of the 

emittance transfer is 12 /εε=k , which corresponds to 

the turn of the beam center of the mass at the angle 180º. 
It is evident, that initial relations between the beam 

phase characteristics (at the inlet into the magnetic field 
area) as well as the initial beam angular momentum affect 
strongly the beam phase transformation followed. For the 
quanitative estimate of the emittance transformation 
during the beam turn at the arbitrary angle the system of 
the ODE should be solved representing the particle 
motion in the magnet.  

Note here, that first the effect of the emittance transfer 
for the simple geometry of the bunch was studied in 
[10,11]. 

MOTION IN QUADRUPOLE MAGNET 
Here the phase portrait behavior of intense charged 

particle bunch moving in the magnetic field of the 
stationary quadrupole is studied. We assume that the 
beam mass center moves in the symmetry plane of the 
magnet. To study this case the approximation of strong 
linear dependence of the forces acting on the particles is 
supposed for both the external field of the magnet and the 
own bunch fields arisen due to the own space charge. Let 
us consider only non-relativistic beam motion again.  

In the coordinate system (x,y,z), connected with the 
bunch center of mass, particle motion equations may be 
written as 
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Here x0(t), y0(t) are the coordinates of the ellipsoidal 

bunch center in laboratory coordinate system, Φ(x,y,z) – 
the potential of the self-consistent bunch field, ώ is the 
gradient of the cyclotron frequency corresponding to the 
field of the quadrupole, e and m are the charge and the 
mass of the beam particle respectively.  

The motion of the bunch center is described by the 
equations 
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with initial conditions  
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Here v is the bunch velocity. So the equation for the 
motion of the bunch mass center may be rewritten as 
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The potential of the uniformly charged ellipsoid we 

may represent as [12]: 
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where Φ0 – the potential in the center of the ellipsoid, 
(x1,y1,z1) – the coordinate system, connected with the 
main axes of the bunch, Kx, Ky, and Kz are determined by 
the following equations: 
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Here K and E are the full elliptical integrals of 1st and 

2nd type respectively, 2/122 )/1( xy RR−=ε is the 

argument of the integrals K and E, mNeq /2= , N – the 

value of the particles per the bunch, e and m are the 
charge and the mass of the particle respectively. 

Taking into account the equations (5), one can write the 
following invariants for the case of the strong bunch 
center motion in the symmetry plane of the 
magnet:

4
.

3
.

2
..

1
2

3
.

2

2.
1

2
3

.
2

2.
1

2

2

CxyCyxCyxCyByyB

yBxAxxAxAI xy

++++++

++++=
  (6) 

 

zLLzIz
.. −= ,  

 
where L(t) is the solution of the equation  
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0

.. =−− LqKyL zω .                                        (7) 

From the condition 0/ ≡dtdI  we can obtain the 
system of the ODE of 1st order, which fully determines 
the bunch phase portrait behavior in the magnetic field of 
the quadrupole: 
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Here  
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The angle θ characterizes the position of the coordinate 

system, connected with the main axes of the elliptical 
cross-section of the hipper-ellipsoid in 4D phase spase, 
corresponding to the usual space, with respect to the axes 
of the coordinate plane (x,y). The angle α corresponds to 
the angle between the axes (x,y) and the main axes of the 
elliptical cross-section of the hipper-ellipsoid in 4D phase 
space, corresponding to the velocity space.   

Using the invariants, let us write the distribution 
function as 

)()1( 2)2(2)1(
zzxy IIIf δκδ −+= ,                     (9) 

where Iz
(1) and Iz

(2) are the linear invariants, 
corresponding to both independent solutions of the 
equation (7). 

The direct calculation of the density with the 
distribution function (9) confirms the self-consistency of 
the model. 

The equations (8) should be solved numerically. Some 
results of such calculations by means of the Runge-Kutta 
method of the 4th order are shown in Figure 1 and Figure 
2.  

In Figure 1 the effect of the emmitance transfer is 
shown dependent on the cyclotron frequency.  Figure 2 
illustrates the time-dependent behavior of the specific 
angles of the bunch cross-section in the coordinate space 
(θ) and in the velocity space (α) with respect to the initial 
position of the main axes of the phase ellipses.  

 
 
 

 
Figure 1: The dependence of the coefficient of the 
emittance transfer on the gradient of the cyclotron 
frequency. 

 
Figure 2: Time-dependence of the turn angles of the phase 
ellipses with respect to their initial position. 
 
 

CONCLUSIONS 
The self-consistent models are the basis of the proposed 

analytical approach to study and develop the achromatic 
structures involving the dipole and quadrupole magnets. 
The approach allows to determine the general physical 
factors which affect the properties of the achromatic 
structure, particularly its possibility to change all the 
beam phase characteristics, both desired and undesired. 
The preliminary study shows the significant influence of 
the initial beam phase characteristics on the phase portrait 
transformation during the beam motion in the dipole and 
quadrupole magnets. The dependence of the emittance 
transfer on the quadrupole field gradient, the affect of the 
initial beam angular momentum and other peculiarities of 
the task geometry on the phase portrait behavior are 
found.  
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