
MITIGATION OF NUMERICAL NOISE FOR BEAM LOSS SIMULATIONS

F. Kesting∗1,2, G.Franchetti2,1

1 Institute for Applied Physics (IAP), University of Frankfurt, Germany
2 GSI, 64291 Darmstadt, Germany

Abstract

Numerical noise emerges in self-consistent simulations

of charged particles, and its mitigation is investigated since

the first numerical studies in plasma physics [1–3]. In ac-

celerator physics, recent studies find an artificial diffusion

of the particle beam due to numerical noise in particle-in-

cell tracking [4], which is of particular importance for high

intensity machines with a long storage time, as the SIS100

at FAIR [5] or in context of the LIU upgrade [6] at CERN.

In beam loss simulations for these projects artificial effects

must be distinguished from physical beam loss. Therefore,

it is important to relate artificial diffusion to artificial beam

loss, and to choose simulation parameters such that physical

beam loss is well resolved. As a practical tool, we therefore

suggest a scaling law to find optimal simulation parame-

ters for a given maximum percentage of acceptable artificial

beam loss.

HEAVY-ION BEAM LOSSES

The uncontrolled loss of charged particles is an important

issue in high energy particle accelerators. For 1 GeV proton

beams, it was found that 1 W/m is the maximum tolerable

beam loss to allow hands-on-maintenance [7]. If more the

energy is deposited, a worker would be exposed a too high

dose during maintenance, and hence a health hazard.

However, this limit of energy deposition is only valid for

1 GeV proton operation. According estimates for heavy-

ion machines were only found recently [8] by dedicated

simulation studies in which a uniform beam loss along a

beam pipe is considered. The pipe is irradiated for 100

days, while the effective dose rate was calculated four days

after the radiation stopped. Then, the residual activity is

compared to the residual activity caused by 1 GeV protons,

in order to infer a scaling law for heavy ions. Using this

scaling law, we estimate the maximum acceptable beam loss

per run in the SIS100 for U+28 particle beams at different

energies, see the Table 1.

part. energy energy dep. # particles

200 MeV/u 75 W/m 1.1 · 1013

500 MeV/u 23 W/m 1.3 · 1012

1000 MeV/u 12 W/m 3.4 · 1011

Table 1: Maximum Acceptable Beam Loss

The design goal of the SIS100 is a maximum of 5 · 1011

particles of U+28 stored in the machine, such that only the

loss of a full 1GeV/u Uranium beam depicts a hazard. For

∗ f.kesting@gsi.de

particle beams with less energy a complete, but uniform,

beam loss can be tolerated.

Further, beam loss may cause a heating of superconduct-

ing structures, such that the material changes to the normal

conducting phase. This may lead to a serious machine dam-

age, or at least will require maintenance, and thus an inter-

ruption of beam time. It was found at the Large Hardron

Collider (LHC) at CERN, that a nominal beam loss of the

order of 10−6 corresponding to 106 protons can cause a mag-

net quench [9]. The limit on the nominal beam loss for the

LHC is exceptionally small, because the beam energy and

the and the intensity are very high compared to other ma-

chines. Simulation studies on the superconducting magnets

of the SIS100 synchrotron at FAIR show that there is no risk

of a magnet quench [10].

The lifetime of organic insulators and protection diodes

in superconducting magnets is expected to give the most

restrictive limit to beam loss for the SIS300 synchrotron. It

was found in simulation studies that a maximum of 2 percent

nominal beam loss can be tolerated for this machine [11].

In summary, the maximum acceptable beam loss varies

greatly for various scenarios, such that different upper

bounds are required for artificial beam loss in numerical

simulations.

ARTIFICIAL BEAM LOSS

In the following chapter, we present an analytic model

to predict artificial beam loss induced by numerical noise

in particle-in-cell tracking. Beam loss occurs whenever the

emittances of a single particle i are larger than the accep-

tance of the machine. A collimator allows controlled particle

loss, as particles with large amplitudes can be removed with-

out activating the accelerator structures. By adjusting the

geometry of a collimator, the acceptance of a machine can

be set to the required size. The rms emittance of a particle

beam is given by

ǫ x =

√

〈x2〉〈x ′2〉 − 〈xx ′〉2, (1)

and accordingly for the y-plane. Here, 〈·〉 is the moment of

the according coordinate, and

〈x2〉 = σ2
x 〈x ′2〉 = σ2

x′ (2)

are the variances of the phase space coordinates, which

quantify the beam size.

The rms emittance of a beam growths linearly in the pres-

ence of numerical noise, as long as numerical noise is weak

and not correlated. The average emittance growth per inte-

gration step of length ∆s was derived from a single particle

Proceedings of HB2016, Malmö, Sweden Pre-Release Snapshot 8-July-2016 11:30 UTC MOPR016

Beam Dynamics in Rings

ISBN 978-3-95450-178-6

1 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
sq

qu
ad

Pr
e-

R
el

ea
se

Sn
ap

sh
ot

8-
Ju

ly
-2

01
6

09
:3

0
U

T
C



model as [4]:

∆ǫ x

∆s
≃ Λ
σ2

x

2ǫ x

(

qδEx

moc2 β2γ3

)2

∆s. (3)

Here, Λ accounts for the particle density of the distribution,

with Λ = 1 for K-V beams and Λ = 0.5 for Gaussian beams.

Further, m0 is the mass of the particle, c is the speed of light,

and β, γ are the relativistic factors. The factor δEx accounts

for the precision of the Poisson solver, and can be found by

a simple numerical investigation. We randomly initialize

the particle distribution, and calculate the electric field in

the center of the beam. We repeat this procedure n times,

and we identify the standard deviation of the n samples with

δEx . This analysis has a low computational load compared

to a full tracking simulation, and can be used to efficiently

find optimal simulation parameters for long-term tracking

simulation, as shown in Ref. [4, 12].

As the particle beam diffuses due to numerical noise, the

single particles may exceed the acceptance in long-term

tracking simulations. We therefore expect to observe numer-

ical noise induced particle loss. In the following, we derive

estimates for such artificial beam loss, and find a scaling law

on simulation parameters. These scalings can be used to find

optimum simulation parameters in terms of computational

load for a maximum tolarable amount of artificial beam loss.

The general form of a particle distribution function for a

beam after injection is given by

f (ǫ x, i , ǫ yi )(s) = f

(

ǫ xi

ǫ x (s)
+

ǫ yi

ǫ y (s)

)

, (4)

where ǫ xi and ǫ yi are the single particle emittances. For

an investigation on artificial beam loss, we have to consider

that f (ǫ x , ǫ y )(s) changes while tracking due to numerical

noise. In the following we discuss artificial beam loss for

the Gaussian distribution, and the Kapchinsky-Vladimirsky

(K-V) distribution.

Gaussian Distribution

The Gaussian particle distribution is given by

f (ǫ x, i , ǫ yi )(s) =
1

4ǫ xǫ y
e
− 1

2

(

ǫx, i
ǫx (s)

+

ǫyi
ǫy (s)

)

, (5)

such that the single particle coordiantes follow a Gaussian

distribution function. The mathematical condition for single

particles to hit a collimator is given by the inequality

x2

(3σx )2
+

y
2

(3σy )2
> 1, (6)

or, in terms of emittances,

ǫ xi

9ǫ x
+

ǫ yi

9ǫ y
> 1. (7)

For illustration, we plot a sample Gaussian distribution in

Fig. 1 together with the condition given by Eq. 7. Most
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Figure 1: Distribution of single particle emittances (blue

points) of a Gaussian beam, and the condition for collimation

according to Eq. 7 (red line).

of the particles are initially not affected by the collimator.

However, a grow of single particle emittance will slowly

induce losses.

To estimate the amount of artificial particle loss, we de-

velop a theoretical model where we consider beams with

equal rms emittances, i.e. ǫ x (s) = ǫ y (s) = ǫ (s). We then

find the condition for collimation as

ǫ xi (s) + ǫ y:i (s) > 9ǫ (s0) ≡ A, (8)

where A is the acceptance of the machine, set by the colli-

mators. With this, we find the nominal beam loss as

∆N

N
= 1 −

∫ A

0

dǫ xi

∫ A−ǫx

0

dǫ yi f (ǫ xi , ǫ yi )(s). (9)

We use Eq. 5, to derive

∆N

N
=

(

A

2ǫ x (s)
+ 1

)

e
− A

2ǫx (s) , (10)

while the evolution of the rms emittance ǫ x (s) is described

by the scaling law Eq. 3. This model can be compared

to previous models of beam loss [13, 14], where nominal

beam loss was estimated by solving a diffusion equation

via Bessel basis functions. For sufficiently large nominal

emittance growth, it was found that

∆N

N
= 1 − exp

(

−
λ1

4A

(

∆ǫ x

∆s

)

s

)

, (11)

where λ1 is the first zero of the Bessel function. We compare

Eq. 10 and Eq. 11 in Fig 2, and find a significantly larger

nominal beam loss for the model derived in this proceed-

ing,. This discrepancy can be explained by the assumption

of large emittance growth in Ref. [13], which refers to a

beam shape given by the Bessel function J0, while in our

model a Gaussian distribution is assumed. Further, the self-

consistent effect of the particle loss on numerical noise is not

considered in our model. Therefore, our model is only valid

for particle losses, where the distribution remains Gaussian,

and the particle loss itself is not changing the strenght of

numerical noise.
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Figure 2: Comparision of models for beam loss caused by

diffusion, where a Gaussian beam distribution is assumed

(red line), or the distribution is approximated by the Bessel

function J0 (blue line).

K-V Distribution

The previously derived model for artificial beam loss is

valid only for Gaussian beams. In the following, we investi-

gate the artificial beam loss for particles beams described by

the Kapchinsky-Vladimirsky (K-V) distribution [15], that is

given by

f (ǫ xi , ǫ yi )(s) ∝ δ

(

ǫ x, i

2ǫ (s)
+

ǫ yi

2ǫ (s)
− 1

)

. (12)

such that solely a single line ǫ x, i = 2ǫ − ǫ y, i is populated,

as shown in Fig. 3.
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Figure 3: Distribution of single particle emittances (blue

points) of a K-V beam, and the according condition for col-

limation (red line).

When placing the collimators at the edges of the beam,

we find that even a weak numerical noise, and thus small

artificial beam diffusion, may cause dramatic artificial beam

loss in K-V beams

ESTIMATION OF OPTIMAL

SIMULATION PARAMETERS

Previous results for Gaussian beams can be used to find

optimal simulation parameters for beam loss studies. In the

following, we discuss the case of beam loss simulations for

the SIS100 at FAIR, but for simplicity assume a circular

beam. The beam and simulation parameters are given as:

• beam size: σx ≃ σy ≃ 7 mm,

• tunes: Qx = 18.87, and Qy = 18.74,

• emittance: ǫ x ≃ ǫ y ≃ 5.7 mm mrad

• integration lenght: ∆s ≃ 5.703 m

• ring length: L = 1083.5 m

• number of turn: Nt = 2.0 · 105

• number of kicks: Ns = 2 · 105 · 190

• space charge tune shift: Qx ≃ Qy ≃ −0.21

• relativistic factors: β = 0.56768, γ = 1.2147

• particle: Uranium-238 in charge state 28

In the following, we consider an exemplary scenario,

where the physics case requiers a maximum of 1 percent of

artificial beam loss. We use Eq. 3 and Eq. 10, to find the

condition for the minimum precision of our solver as

〈δEx〉 ≤ 28.9 Vm−1. (13)

In the following, we find optimal simulation parameters for

the MICROMAP tracking library [16], that utilizes a two-

dimensional spectral solver [17–19]. For the solver, we use

as a first attempt NM = 1000 macro-particles, and a mesh

of NG × NG = 64 × 64 grid points. By analyzing n = 1000

samples of the electric field initializations, we find

δEx ≃ 210 Vm−1. (14)

We thus have to increase the precision of the solver, by a

factor of about 7 to limit the nominal beam loss to 1 percent,

which requires NM ≃ 53.000 macro-particles. If instead

we consider a maximum of 0.1 percent of beam loss, our

theory predicts an optimum number of macro-particles of

NM ≃ 514.000.

BEAM LOSS SIMULATIONS

In the following, we present beam loss simulations of

coasting beams whose dynamics is distorted by strong nu-

merical noise, and compare it to our analytical derivations.

The tracking is performed with MICROMAP [16], while

we use the beam and simulation parameters as listed in the

previous chapter. The collimators are placed at ±3σx and

±3σy , such that particles with larger amplitude are scraped

within the first turns. As this effect is superposed with the

artificial beam loss pattern, we normalize the beam inten-

sity after 2000 turns. In order to resolve well the beam loss

pattern, we repeated the simulation 15 times, and show the

average loss pattern in Fig. 4.

We reach agreement on the model with the loss pattern

for different number of macro-particles. In the following, we

investating the beam loss pattern of a rms equivalent [20,21]

K-V beam, for which the collimators are placed at positions

slightly larger than the beam size. In Figure 5, we show the

beam loss pattern for different number of macro-particles,

and with the same beam and simulation parameters as for

Gaussian beams.
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Figure 4: Beam loss pattern within the first 10,000 turns in a

SIS100 scenario for a Gaussian beam with different number

of macro-particles.
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Figure 5: Beam loss pattern within the first 1000 turns in

a SIS100 scenario for a K-V beam for different number of

macro-particles.

The beam loss pattern for K-V beams shows an above-

average beam loss during the very first turns. This is due

to the fact, that the emittances of many particles are very

close to the edge of acceptance, and even a small random

fluctuation in the coordinate may induce beam loss. Later,

the beam loss becomes more moderate, but is still much

stronger compared to Gaussian beams.

SUMMARY

We developed a theory for estimating optimal simulation

parameters for a maximum acceptable beam loss. The theory

is based on previous investigation on the propagation and

generation of numerical noise. We show with numerical

simulation typical loss patterns for Gaussian and K-V beams,

that are in agreement with analytical derivations.
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