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Abstract

To guarantee long-term reliability in the predictions of

a numerical integrator, it is a well-known requirement that

the underlying map has to be symplectic. It is therefore im-

portant to examine in detail the impact on emittance growth

and noise generation in case this condition is violated. We

present a strategy of how to tackle this question and some

results obtained for particular PIC and frozen space charge

models.

INTRODUCTION

A typical application of a space charge solver is to sim-

ulate the behaviour of a beam of charged particles over a

reasonably long period of time inside a storage ring. In par-

ticular this is the case when studying emittance growth near

resonance lines in a tune diagram [1].

On the one hand, it is a well-known fact that the simulation

of a system admitting a Hamiltonian has to be symplectic in

order to remain on the energy shell [2]. On the other hand,

this basic condition is usually violated if one integrates the

underlying equations of motion in a straightforward manner.

Probably the most simplest example when this happens is

the Explicit-Euler method. But also in the sophisticated case

of a space charge solver, now acting on the set of bunches

in a large dimensional phase space, symplecticity is not

necessarily be fulfilled as we shall see.

In this article we present results in which we tested an

analytic (Basetti-Erskine) solver, and a so-called (2 + 5)-D

Particle-In-Cell (PIC) solver, which are both implemented

inside the widely-used space charge tracking program PyOR-

BIT, against the usual symplecticity condition. Both meth-

ods involve the addition of so-called space charge nodes at

particular steps around the ring, which simulate the result

of interaction between the charged particles. Our reference

case will be the (uncoupled) plain tracking case obtained

with PyORBIT and MAD-X.

The symplecticity checks were performed by using two

different, but closely related, methods of numeric differentia-

tion. These methods are straightforward and can basically be

applied to any tracking code. We are mainly considering a

test ring of 1km circumference with 416 space charge nodes,

but also use a FODO map with just 4 nodes.

We will see that, as the reader probably might have ex-

pected, up to the precision of our methods the previously

mentioned PIC solver violates the symplecticity condition,

while the analytic solver is symplectic. We expect that the
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outcome of this violation might have an influence on long-

term studies involving PIC solvers. One such effect which

clearly distinguish both methods is the generation of noise

in the transversal emittances in the PIC case [3]. The natural

question thus arrises whether the symplecticity violation is

the main driving term behind this behaviour.

In order to give an indication to the answer, we performed

several tracking studies, using a low number of macroparti-

cles, on a FODO cell and a small test ring. There are several

reasons for choosing a low number: Firstly, due to the fact

that we need at least to check the Jacobi-Matrix, we can not

go much higher. Secondly, it turned out that a small ring

with reasonable parameters can mimik a similar situation

with a large phase-space. However, the outcome is also vari-

ing more, which has to be taken care off by simulating the

same situation several times.

SYMPLECTICITY CHECKS

Before we are able to apply the numeric differentiation

methods, let us remark that PyORBIT is not dumping the

beam in canonical coordinates, a fact which must be taken

into account.

Numeric Differentiation Method
A straightforward way of how to check the symplecticity

of a numerical integrator at a given point x is to approximate

its Jacobi-Matrix by 1D fits for every pair of directions.

Namely, if M : P → P denotes the given map from

2k-dimensional phase space P ⊂ K2k to itself, we specify a

step size1 ǫ and approximate ∂j Mi (x) for a given point x by

the slope of a linear fit of the values Mi (x + kǫbj ), k ∈ Z,

where the bj denotes a basis and Mi the ith component with

respect to that basis.

Then the symplecticity condition is checked by com-

puting R := (M ′)tr JM ′ − J, where M ′ = (∂j Mi (x))i j is

the now determined Jacobi-Matrix of M at x and J the

matrix representation of the given symplectic structure in

the above basis. In the following we will understand by the

(Frobenius) norm of R the distance of M at a given point

x ∈ P towards sympleciticity.

If we assume that in every direction bj the amount of

bunch configurations x + kǫbj for variing k is the same

number K , and if we denote the number of particles by N ,

we effectively have to track 36N2K times through the ring to

compute the entire Jacobi-Matrix. It is therefore not feasible

to perform this computation for a large number of particles.

1 In general this step size has to be choosen seperately for every direction

and component.
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Code |R|2D

PyORBIT (pure tracking) 1.4966 · 10−5

Basetti-Erskine 2.2518 · 10−5

PIC 3.5421 · 10−3

Table 1: Symplecticity Error for Various Codes for a FODO

Cell having 4 Space Charge Nodes

But for a numeric confirmation of the non-symplecticity this

is also not necessary.

2d Fit Method
An alternative way to check the symplecticity condition

is based on the observation that around x we can write M in

form of a Taylor series

M (x + a) = M (x) + M ′(x)a + O(|a |2).

Inserting for a the quantities ǫbj and ǫ̃bk , in which ǫ and ǫ̃

are sufficiently small, we obtain

ǫ ǫ̃〈M ′(x)bj,M
′(x)bk 〉 = O(ǫ ǫ̃2) + O(ǫ2 ǫ̃ )

+ 〈M (x + ǫbj ) − M (x),M (x + ǫ̃bk ) − M (x)〉.

M is then symplectic at x if, in the limit ǫ, ǫ̃ → 0, for every

pair ( j, k) of directions the coefficient in front of the ǫ ǫ̃-

polynomial, given by the 2D-fit of the values

〈M (x + µǫbj ) −M (x),M (x + νǫ̃bk ) −M (x)〉, µ, ν ∈ Z,

equals 〈bj, bk 〉. It is clear that this method works for any

symplectic structure 〈·, ·〉 and any basis.

BENCHMARKING RESULTS

Symplecticity Errors
Before we are going to benchmark the codes on our test

ring, let us adress the question about which of the codes can

we regard as ’symplectic’, in the sense that its approximated

derivative, given by one of the methods in the previous

section, has an error which is so small, that the (uncoupled)

drift case leads to a similar error.

To begin with, let us consider the case of a basic FODO

cell having just 4 space charge nodes. Table 1 summarizes

our findings: It shows that the symplecticity error with re-

spect to the particle model (here 16 particles) is nearly the

same for the Basetti-Erskin model and the plain tracking.

On the other hand, we see a rather significant error for the

PIC case, which means that the code can hardly be symplec-

tic.

Let us now turn to our model of a 1km ring with several

space charge nodes. For the tracking around this ring (no

space charge yet), it turns out that we basically require two

different families of step sizes: one for the spatial direc-

tions and one for the momentum directions of the canonical

coordinates (we used ǫq = 4 · 10−4, ǫ p = 1 · 10−5).

Although the ring now contains all 416 space charge nodes

and thus the sensitiveness is likely to be lower than the cur-

rent step size, we can still ask how far the resulting map is

away from a symplectic solution. In our case we found, for

16 macroparticles, a derivation of |R|2D = 8.9790 · 10−5

and |R|ND = 3 · 10−4 in case of the ND-method, so the 2D-

fit method gives slightly better results. However, we found

that in case of pure MAD-X tracking, we obtained for both

modes |R|2D = 2.4907 · 10−6 and |R|ND = 3.0440 · 10−6 re-

spectively, so the ND-method has almost the same precision

here.

Figure 1: Typcial example of pure drift PIC error matrix R

Fig. 1 shows a typical example of the error matrix we

obtained with the PIC solver, determined with the 2D-fit

method. The entries in the error matrix usually do not drop

below 10−6 and we take this scale as a rough lower limit of

the precision of our methods.

Figs. 2 and 3 are showing the corresponding residuals of

the fits for both methods, respectively, for a typical example

of pairs of directions in which the residual were largest, by

which we were able to check if the step sizes were choosen

appropriately. Here we have used 16 macroparticles, the PIC

space charge solver, 3rd order fits in every case and K = 5

different values to determine the slope at the midpoint.

The outcome of the corresponding sympleciticty checks

with space charge are shown respectively in Figs. 4 and 5

for the analytical- and the PIC solver.

Emittance Growth in the Sandbox Model
While starting some tracking simulations for 10k turns,

we observed that our sandbox ring mimics roughly the be-

haviour of the ’large scale’ scenario, if parameters are ad-

justed properly. This means that the growth in the mean of

the horizontal and vertical emittances increases as in the

large-scale case, and slows down when adding more parti-

cles.

However there is also a drawback: Namely the small num-

ber of macroparticles leads to a larger fluctuation of the

outcome. This means that we have to perform tracking ex-

periments repetitively to obtain results of better reliability.

MOPR029 Proceedings of HB2016, Malmö, Sweden Pre-Release Snapshot 8-July-2016 11:30 UTC

ISBN 978-3-95450-178-6

2C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
sq

qu
ad

Pr
e-

R
el

ea
se

Sn
ap

sh
ot

8-
Ju

ly
-2

01
6

09
:3

0
U

T
C

Beam Dynamics in Rings



Figure 2: Slope fit of ND method.

Figure 3: 2D-fit method.

Figure 4: Basetti Erskine model with |R|2D = 0.0118.

This was especially the case for particle numbers below

approx. 25.

Our first goal was to determine, in dependency of the

(random) initial coordinates, a possible correlation between

the sympleciticty error and the number of particles. The

result can be found in Tab. 2.

As one can see from this table, the error reduces by adding

more particles, which might be contrary to the picture that

by adding more dimensions, one might add more space and

thus be farther away.

Figure 5: (2 + 5)-D PIC solver with |R|2D = 0.14461

Number of par-

ticles

|R|ND |R|2D

8 3.1370 1.4629

12 0.8866 0.4711

16 0.3293 0.1950

20 0.2100 0.1063

24 0.1673 0.0877

Table 2: Mean Values of Initial Error Matrices with Space

Charge

Furthermore, we were looking at how the error in sym-

plecticity evolves with the number of turns. Our results are

summarized in the next four Figures 6 to 9 in which we were

tracking a system of particles over 10k turns. The green

curves shows the mean of the vertical and horizontal emit-

tances. At every 500 turns we dumped the beam to a file and

determined the error of the derivative of the one-turn map

at that given point towards symplecticity (blue curves). The

straight lines indicate regression fits of the green and blue

data points respectively.

Figure 6: Mean emittance growth with 8 particles. Descrip-

tion: see text body.
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Figure 7: 12 particles.

Figure 8: 16 particles.

Figure 9: 20 particles.

These last benchmarkings indicate that there might be

a correlation between the slopes of the emittance growth

and the symplecticity errors. Our current explanation is that

if the emittance increases, so does the phase space. If the

particles are spread out more in phase space, there is less

interaction between them, which means that we drop more

and more into (symplectic) single particle tracking.

Of course, using regression lines may hide essential fea-

tures and may not be appropriate here. But for a first try

it should be good enough. In Fig. 10 we have plotted the

slopes against each other, using 95% confidence intervals

of the regression fits as error bars. It is clear that we require

more data points to make further assertions, but a correlation

is already been visible.

Figure 10: Slope of mean vert. and hor. emittances vs. slope

of symplecticity error (2D-fit method here).

CONCLUSION

By using numeric differentiation methods we were able

to determine the symplectic - respectively - non-symplectic

nature of our space charge solvers. Furthermore we found

certain correlations between the errors of symplecticity of

the ring-map and the mean emittances growth of the beam.

We are currently gathering more data in oder to improve

our picture and understanding.
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