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Abstract

The half integer resonance is often used to define the

high intensity limit of medium or low energy hadron rings

where transverse space charge is significant. However, the

mechanism leading to particle loss as beam approaches this

resonance, which thus defines the limit, is not clearly un-

derstood. In this paper we explore simple models, based on

single particle resonance ideas, to see if they describe useful

aspects of motion as observed in simulations and experi-

ments of 2D coasting beams on the ISIS synchrotron. Single

particle behaviour is compared to 2D self-consistent models

to assess when coherent motion begins to affect the single

particle motion, and understand the relevance of coherent

and incoherent resonance. Whilst the general problem of

2D resonant loss, with non-stationary distributions and non-

linear fields is potentially extremely complicated, here we

suggest that for a well-designed machine (where higher or-

der pathological loss effects are avoided) a relatively simple

model may give valuable insights into beam behaviour and

control.

INTRODUCTION

Background

The half integer resonance is often taken as defining the

high intensity limit of hadron rings, where there is the ex-

pectation that lower order, quadrupole errors will drive the

dominant loss. However, the details of mechanisms driv-

ing particle emittance growth and loss as beam approaches

resonance are not well understood.

Whilst the well known intensity limit based on the inco-

herent tune shift gives a useful rule of thumb, it over esti-

mates losses as it neglects coherent motion of the beam [1].

The coherent model, on the other hand, gives a fuller,

self-consistent picture by taking into account the envelope

modulation, and predicts resonance at the higher, coherent

limit. However, coherent theory is based on Kapchinskij-

Vladimirskij (KV) distributions and RMS equivalent models

that are only valid as long as RMS emittances are conserved,

i.e. when there is no emittance growth. Therefore, they

cannot be used to understand particle motion and loss as

beam approaches resonance. To derive models to explain

such losses, a modified single particle model is required that

includes the effect of the coherent response of the beam.

As a first step, this paper analyses single particle motion

in the frozen space charge case for a representative waterbag

beam. An initial comparison with coherent theory is also

given. Future work will build on these results, exploring

their limitations with detailed self-consistent simulations.

Building on Experimental Results from ISIS

The idea that single particle models should be useful for

describing half integer resonance comes from experimental

observations on the ISIS proton synchrotron [2]. Extensive

experimental and simulation work studying the approach

of half integer resonance in 2D coasting beams have char-

acterized the evolution of transverse beam profiles in de-

tail [2, 3]. Comparison of these results with comprehensive

ORBIT models indicated that "lobe" features on profiles cor-

responded to half integer resonant islands. This suggests that

a useful starting point for models is single particle theory,

with the expectation that corrections for coherent effects will

be required.

Below we calculate particle trajectories for resonant parti-

cle motion in a frozen space charge model, next we analyse

the main dependencies this predicts for driving term strength,

tune and intensity. Finally, we discuss and compare predic-

tions with those from coherent theory, and outline future

work.

FROZEN WATERBAG MODEL

This analysis considers the motion of a test particle, in a

smooth focusing system, in the space charge field of a frozen

waterbag beam distribution. This distribution is chosen as

a representative case that includes key features a KV distri-

bution does not: it has tune variation with amplitude and is

non-stationary. It is the initial motion of this non-stationary

distribution that we are interested in for studying the onset

of resonance. This non-stationary waterbag beam would

redistribute in any realistic non-frozen beam model, and this

means the Hamiltonian derived below is certainly not an

invariant over long time scales. Usually the type of analysis

used here assumes resonance with long term invariance with

KV beams, e.g. [4]. However, what is of interest here is the

short term motion of a beam; its initial redistribution as it

approaches resonance. Therefore, we use this "short term in-

variant" to predict the initial trajectories of particles, before

the beam redistributes significantly. This should indicate

how the beam behaves on approaching resonance.

The analysis of particle motion is made difficult by the

piecewise definition required for the space charge potential

inside and outside the waterbag beam. This complication

is removed using the method of phase averaging, following

work in [4]. This gives a smoothed action-angle approxima-

tion, from which we can extract particle motion.

Phase Averaged Hamiltonian

We analyse the motion of a test particle in the field of a

4D, axisymmetric waterbag beam with radius a of the form

n(r) = n0(1 − r2

a2 ), (for r ≤ a, zero otherwise) with r2
=
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x2
+ y

2. We consider motion of particles in one plane only,

e.g. the y = 0 plane, so r = x. The motion of the beam in one

dimension is defined in canonical coordinates (x, Px ), with

periodic "time" dependence s, via the quadrupole driving

term Kd (s), in a smooth focusing system with zero intensity

tune ω =
Q

R
. The periodic system corresponds to a ring of

mean radius R with betatron tune Q. The Hamiltonian is:

H (x, Px, s) = 1
2

P2
x +

1
2
ω2x2

+ Kd (s)x2
+ V (x), (1)

where the space charge potential V (x) is defined in a piece-

wise way as:

V (x) =


Vi = −k ( x2

a2 − x4

4a4 ), if x ≤ a,

Vo = −k ( 3
4
+ log

|x |
a

), if x > a,
(2)

with k =
q2N

2πǫ0mc2β2γ3 the perveance, q and m the particle

charge and mass, N the number line density, c the speed of

light and β and γ relativistic parameters.

To perform the phase averaging we now transform to

action-angle variables (φ, J) defined by:

x =

√

2J

ω
sin φ; Px =

√
2Jω cos φ, (3)

and then the aim is to determine H = H (φ, J, s) =
1

2π

∫ 2π

0
H (φ, J, s)dφ, the Hamiltonian averaged over one be-

tatron oscillation. The system is assumed to be near reso-

nance. Equation (3) is substituted into (1) and (2), and the

integrations completed.

It is convenient to split the Hamiltonian (1) into two parts,

the simpler first three terms H0 and the piecewise final term,

that we average to find V (J). Phase averaging over H0, with

the assumption that the system is near a single half integer

resonance, 2Q = lθ, with θ ≡ θ(s) = s
R

, leads to the usual,

well known result. The driving term is periodic with one

dominant term: Kd (s) = kl cos lθ , and we find

H0 = ωJ +
kl J

2ω
cos(2φ − lθ). (4)

The full Hamiltonian is now H = H0 +V (J), where the last

term is the result of phase averaging over the piecewise po-

tential (2). This, when expanded in action-angle coordinates,

becomes

Vi = −
k

a2

[
J

ω

(

1 − cos 2φ

)

−
J2

ω2a2

(

3

8
−

1

2
cos 2φ +

1

8
cos 4φ

)]
,

(5)

Vo = −k

[
log

(

√

2J

ωa2
| sin φ|

)

+
3
4

]
. (6)

The phase averaging calculation depends on whether the

test particle has an amplitude such that it is always within the

beam (core), or one that exceeds the beam radius for some

of the oscillation (halo). It is useful to define the normalised

amplitude (as in [4]) given by σ = x/a =
√

2J/ωa2, where

σ = 1 or J = Ja = ωa2/2, corresponds to the beam edge.

For a particle always within the beam J ≤ Ja , σ ≤ 1 the

phase averaging is just over the Vi term in (5).

Vc = I0 =
1

2π

∫ 2π

0

Vidφ. (7)

This gives a simple result, as oscillating terms average to

zero (in the absence of driving terms, and in the incoherent

approximation):

I0 = k

[
−

1

a2ω
J +

3

8

1

a4ω2
J2
]
. (8)

For a particle of an amplitude J > Ja , σ > 1, it is useful

to define the angle φ1 with sin φ1 = 1/σ. This defines the

phase at which the test particle crosses the beam boundary.

To achieve the averaging we integrate over a representative

part of the oscillation: the internal potential Vi is integrated

from φ = 0→ φ1 and the external Vo from φ = φ1 → π/2:

Vh = I1 + I2 =
2

π

[∫ φ1

0

Vidφ +

∫ π

2

φ1

Vodφ

]
. (9)

The results of these integrations are

I1 = −
k

a2

[
J

ω

(

φ1 −
1

2
sin 2φ1

)

−
J2

w2a2

(

3

8
φ1 −

1

4
sin 2φ1 +

1

32
sin 4φ1

)]
,

(10)

and

I2 = −k

[
3

4

(

π

2
− φ1

)

+ F (σ)

]
. (11)

where the integral F (σ) =
∫ π/2

φ1
log(σ | sin φ|)dφ, (φ1 > 0)

is not defined in terms of normal functions, but in the domain

relevant here is simple in form and easily tabulated, see

Fig. 1.

2 4 6 8 10

0.0

0.5
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1.5

2.0

2.5

σ

F
(σ)

Figure 1: The function F (σ).

The s dependence due to resonance in H0 (4) is removed

via a canonical transformation with an F2 generating func-

tion and associated equations:

F2 = J̄ (φ −
l

2

s

R
);

J = J̄; φ̄ = φ −
l

2

s

R
; H̄ = H −

l

2R
J .

(12)
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The result is

H = H (J, φ̄) = δJ + SJ cos 2φ̄ + V (J), (13)

where δ = (ω − l
2R

) = 1
R

(Q − l
2

), S =
kl
2ω

and,

V (J) =


Vc = I0 if J ≤ Ja (core).

Vh = I1 + I2 if J > Ja (halo).
(14)

Essentials of Particle Motion

We now look at the predictions of this model, using

the example of a nominal coasting beam in the ISIS ring.

Resonance in just one plane is considered, 2Qy = 7 (par-

ticles are assumed to have zero amplitude in the orthog-

onal plane). The relevant parameters are: Qy = 3.60,

R =26 m, a =0.05 m, l = 7, ∆k7 = 0.005 (∆k7 = k7/k =

2k7/ω
2), and Np = 4.4 × 1013 ppp (protons per pulse,

where N = Np/(2πR)). By setting the driving strength

∆k7 = 0 and using numerical solutions for F (σ) and its

derivative we can calculate the frequency variation with J,

i.e. w(J) = Q(J)/R =
∂H (J )

∂J
. This is shown in Fig. 2.

J=Ja

2Qy=7

Qo

Ωy /2
B

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

3.2

3.3

3.4

3.5

3.6

J (m)

Q

Figure 2: Example of Q(J) for waterbag beam (see text).

BA C
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-0.10

-0.05

0.00

0.05

0.10

Figure 3: Example of H for waterbag beam, normalized

coordinates (x, Px/ω) in metres (see text).

The system is a non-linear oscillator with a frequency

characterized by the Q(J) dependence above. Single par-

ticle resonance, i.e. the stable fixed point, coincides with

the intercept of the Q(J) curve with the Qy = 3.5 line in

Fig. 2 (point "B"). Contours of the "short term invariant"

surface H , equation (13) are shown in Fig. 3. The contours

of this surface give an indication of the initial trajectories

of particles, of the nominally matched beam, here of radius

0.05 m. Of particular interest is the stable fixed point ("B"

in Fig. 3), and also the inner and outer limits of the sepa-

ratrix and their intercepts with the x-axis (points "A" and

"C" in Fig. 3). The fixed points are calculated in the normal

way, using φ̇ = 0, J̇ = 0 with Hamilton’s equations, and the

separatrix being the contour that passes through the unstable

fixed point. Particles drawn along trajectories corresponding

to the contours shown will either be confined in the central

core region, drawn outward to oscillate about the the fixed

points at the centre of the two resonant islands, or else make

larger oscillations around both islands. The two resonant

islands are expected to correspond to "lobes" observed in

transverse profile measurements on ISIS. This model now

allows us to predict the variation of the location and extent

of these lobes with respect to beam parameters.

Comparison with Simple Tracking Results

The results presented here, Q(J) and H , have been com-

pared with tunes and Poincaré maps from simple 1D particle

tracking results, where motion was integrated directly and

piecewise potentials explicitly included. Results show good

agreement within the expected approximations.

-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

Figure 4: H with increased driving term strength ∆k7, note

change in scale (see text).

PREDICTIONS OF MODEL

Continuing with the simplified example of ISIS, the depen-

dence of Q(J), H on beam parameters is now investigated.

Effect of Driving Term Strength

Beam parameters assumed are Qy = 3.60, R = 26 m,

a = 0.05 m, l = 7, Np = 4.4 × 1013 ppp and various

values of ∆k7. Results for ∆k7 = 0.005 are shown in Fig. 3.

When k7 = 0 the lobes disappear and contours become

circular. Setting ∆k7 = 0.05 gives the result in Fig. 4. The
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results show that the effect of increasing driving strength

is to increase asymmetry and enlarge the extent of the two

resonant lobes, whilst reducing the size of the central core

region. In Fig. 5 we show in detail the variation of the stable

fixed point and inner and outer limits of the separatrices

(points "A", "B" and "C" defined in Fig. 3) with driving

strength.

B

A

C

●●● ● ● ● ● ●
■■■ ■ ■ ■ ■ ■

◆◆◆ ◆ ◆ ◆ ◆
◆

0.01 0.02 0.03 0.04 0.05

0.00

0.05

0.10

0.15

0.20

Δk7 Driving Strength

x
(m

)

Figure 5: Dependence of island location and size on driving

term strength.

2Qv=72Qv=7

J=Ja

2Qv=7

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
3.35

3.40

3.45

3.50

3.55

3.60

J (m)

Q

Figure 6: Q(J) as a function of lattice Q (see text).
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Figure 7: H with raised Q = 3.65 (see text).

Effect of Q

The effect of varying lattice tune Q = ω/R is now exam-

ined. Beam parameters are R = 26 m, a = 0.05 m, l = 7,

Np = 2.2 × 1013 ppp. In Fig. 6, the dependence Q(J) is

shown for Q = 3.65, 3.60, 3.55 (top to bottom), ∆k7 = 0.

The results show that as the lattice tune moves down, so

the Q(J) intercept with Qy = 3.5, the stable fixed point

and islands, move outward through the beam. In Fig. 7 the

surface of H is shown for Q = 3.65, ∆k7 = 0.005: the stable

fixed points are near the core of the beam as expected. This

suggests that higher Q values may perturb the core a little,

but generate smaller halo than lower tunes, where location

of the stable fixed point suggests particles (and profile lobes)

would be pulled further out from the core.

Effect of Intensity

The dependence of Q(J) for three different intensities

Np = 1.1, 2.2, 4.4 × 1013 ppp, (top to bottom), is shown in

Fig. 8, with parameters: Q = 3.60, R = 26 m, a = 0.05 m,

l = 7, and ∆k7 = 0. In this case the effect is to move the

stable fixed point from the core to the outside of the beam

as intensity increases, with a corresponding movement of

the resonant islands and profile lobes.

2Qv=72Qv=7

J=Ja

2Qv=7

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
3.2

3.3

3.4

3.5

3.6

J (m)

Q

Figure 8: Q(J) as a function of intensity (see text).

Effect of Dynamic Intensity and Q Ramps

In a situation with a real beam, often the parameters above

will change with time. For example, during multi-turn in-

jection, intensity will ramp over 100s of turns. One might

expect the situation in Fig. 8 to be descriptive, with the tunes

in the beam pushing down with intensity and the separatri-

ces moving correspondingly outward. Similarly, ramping

the tune by changing quadrupoles in the lattice may give

a dynamic situation related to Fig. 6. This simple picture

ignores many complications, as discussed below.

LIMITATIONS OF THE MODEL

Non-Stationary Distribution, Mismatch

The fact that the waterbag distribution is non-stationary

means that over long time scales the above analysis will

not predict particle trajectories. If, in addition, beams are

strongly mismatched, then redistribution may be faster and

correspondence to the above analysis weaker. However, it

may be that once the beam has redistributed and "grown",
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the above model, with a modified beam radius, will give a

first estimate of behaviour.

Coherent Motion

As noted, the above model is not self-consistent, and thus

ignores any coherent response of the beam. Coherent effects

will, in general, modify space charge fields and particle

motion. Near coherent resonance effects on the beam are

expected to be strong and a frozen single particle model to

have limited value. However, further away from resonance

effects will be weaker, and single particle models would be

expected to explain main features of the motion, perhaps

with some smaller modifications.

The dependence of coherent frequency of the beam en-

velope on space charge can be estimated using the concept

of equivalent beams [1]. We expect the RMS parameters

and resonant frequencies of our waterbag beam to behave

in the same way as a KV beam with the same RMS emit-

tance (ǫRMS). The edge of the 4D waterbag beam is at 6ǫRMS.

Assuming a circular beam and the large tune split approxima-

tion valid for ISIS (nominal tunes (Qx,Qy ) = (4.31, 3.83)),

we find coherent frequencies using (in the notation of [1]):

Ωy =

√

4Q2
y − 5Qx∆Qx (15)

with ∆Qx = rpNp/(2π β
2γ34ǫRMS), rp is the proton radius.

This theory is two dimensional and provides coherent fre-

quencies in both planes, but for this 1D model only one plane

is relevant.

An example is shown in Fig. 2, where
Ωy

2
is shown as

the horizontal dashed line. This is expected to sit above

the peak incoherent shift (as the coherent intensity limit

is higher than the incoherent) [1], and its relative position

will scale proportionately with intensity. When the driving

frequency (2Qy = 7 line) approaches the coherent frequency
Ωy

2
, then coherent resonance is expected with large coherent

envelope oscillations and associated beam redistribution.

Otherwise, coherent effects will be less pronounced and

predictions of the single particle model will be more useful

(with modification).

In Fig. 2, the system is away from coherent resonance:

lowering the intensity would move the coherent tune upward

towards resonance. This gives a first indication of when

coherent effects will dominate: future work will make more

use of predictions of RMS envelope motion to modify the

above model, and test the results in detail with simulations.

2D Motion, Higher Order Effects

The work above ignores the motion of particles with finite

emittance in the plane orthogonal to resonance. Assuming

no additional resonance or coupling, one may expect the

average effect to be a reduced average tune shift for larger

amplitude particles, as they spend less time in the core of the

beam. Future work will investigate this in more detail. The

possibility of other resonances and space charge (particularly

octupole) terms also need to be considered.

SIMULATIONS AND EXPERIMENTS

Comparison with Simulations

Work is presently underway comparing the results above

with output from 2D self-consistent simulations (using the

ISIS SET code). Initial results show reasonable agreement of

incoherent frequency distributions and coherent frequencies

between the above model and a simulated waterbag beam.

There is also some correspondence between phase space

distributions and phase space structure predicted above, but

more detailed analysis is required.

Comparison with Experiments

ISIS experiments, where coasting high intensity beams

are pushed onto the half integer resonance are described

in [2, 3]. In these experiments profiles were observed to

form a lobe on each side of the central beam distribution,

corresponding to the resonant islands discussed above. The

size and distance of these with respect to the central beam

core has been measured as a function of driving strength

and tune. The lobes were observed to move outward with

increasing driving term strength and also outward as the

tune was lowered. This is in qualitative agreement with

the predictions above. However, more work is required to

address the approximations in the model and thus allow a

more useful quantitative comparison.

SUMMARY

The "short term invariant" Hamiltonian for a frozen wa-

terbag beam has been calculated using the method of phase

averaging. This has been used to give predictions of the de-

pendence of halo structure on parameters of driving strength,

tune and intensity. The limitations in the model have been

discussed and the influence of coherent effects briefly as-

sessed. Predictions show qualitative agreement with exper-

imental observations. However, further developments of

calculations and detailed comparisons with self-consistent

simulations are required to facilitate a more quantitatively

predictive model.
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