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Abstract
The IMPACT code suite is a self-consistent parallel three-

dimensional beam dynamics simulation toolbox that com-
bines the magnetic optics method and the parallel particle-
in-cell method. It has been widely used to study high in-
tensity/high brightness beams in many accelerators. In this
paper, we will report on recent improvements to the code
such as the capability to model RFQ in time domain and
symplectic multi-particle tracking with a gridless spectral
solver for space-charge simulation.

INTRODUCTION
The IMPACT code suite is a parallel three-dimensional

multi-particle tracking code to simulate charged particle
beam dynamics in high intensity/high brightness accelera-
tors. It includes a time-dependent code, IMPACT-T [1] and
a longitudinal position dependent code, IMPACT [2]. Both
codes use a particle-in-cell (PIC) method to self-consistently
model the space-charge effects in the simulation. It has been
used to model high intensity proton/ion linac, high bright-
ness photoinjector, electron linac, proton synchrotron and
other accelerators.

A NEW RFQ MODEL
The popular RFQ design code Parmteqm uses position as

an independent variable and has a two-dimensional space-
charge solver [3]. These approximations might introduce sig-
nificant errors at lower energy for high intensity proton/ion
beams. A new RFQ model is added into the IMPACT-T
code with a three-dimensional space-charge solver includ-
ing space charge effects within the bunch and the effects
from neighboring bunches. In the RFQ model, eight term
expression was implemented to account for the external ac-
celerating/focusing effects. All coefficients can be obtained
from the Parmteqm output file PARIOUT.OUT. Normally,
an RFQ consists of different types of cells including radial
matching section (RMS) cells, normal cells, and transition
cells (including m = 1 cell and fringe cell). Inside the nor-
mal cells, the potential expression is given by

U (r, θ, z) =
V
2
{A01(

r
r0

)2 cos(2θ) + A03(
r
r0

)6 cos(6θ)

+[A10I0(kr) + A12I4(kr) cos(4θ)] cos(kz)
+[A21I2(2kr) cos(2θ) + A23I6(2kr) cos(6θ)] cos(2kz)

+[A30I0(3kr) + A32I4(3kr) cos(4θ)] cos(3kz)} (1)
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In the above equation, 0 ≤ z ≤ L, where L is the length of a
cell. In the sine and cosine terms, k = π/L; in the modified
Bessel function I2m(nkr) terms, k varies linearly over the
cell. In the fringe cell and the RMS cells, the potential
expression is given by

U (r, θ, z) =
V
2

6A01

k2r2
0

(I2(kr) cos(kz) +
1
27

I2(3kr)

cos(3kz)) cos(2θ) (2)

where k = π/(2L), L is length of transition cell. In the
transition cell, the potential expression is given by

U (r, θ, z) =
V
2

[(
r
r0

)2 cos(2θ) − A10I0(kr) cos(kz)

−A30I0(3kr) cos(3kz)] (3)

where k = π/(2L), L is the length of the transition cell. In
all of these expressions, the A01, · · · , A32 coefficients values
can be calculated by linear interpolation at each z ( defining
z = 0 at the interface).
As an illustration of this new model, we simulated a

charged proton beam with 5 mA current at 2.1 MeV trans-
porting through an RFQ designed for the PIP-II project. The
final beam phase space distributions at the RFQ exit from
the IMPACT-T simulation, from the Toutatis [4] simulation,
and from the ParmteqM simulation are shown in Fig. 1. It is
seen that the IMPACT-T results agree with the Toutatis and
the Parmteqm simulation results quite well.

SYMPLECTIC MULTI-PARTICLE
TRACKING WITH A GRIDLESS

SPECTRAL METHOD
In the accelerator beam dynamics simulation, for a multi-

particle system with Np charged particles subject to both
space-charge self fields and external fields, the approximate
Hamiltonian of the system can be written as:

H =
∑
i

p2
i /2 +

1
2

∑
i

∑
j, j,i

qφ(ri, rj ) +
∑
i

qψ(ri) (4)

where H (r1, r2, · · · , p1, p2, · · · , s) denotes the Hamiltonian
of the system, φ is the space-charge Coulomb interaction po-
tential among the charged particles (with appropriate bound-
ary conditions), ψ denotes the potential associated with the
external fields. ri denotes the canonical spatial coordinates
of particle i, and pi the normalized canonical momentum
coordinates of the particle i. The equations governing the
motion of individual particle i follows the Hamilton’s equa-
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Figure 1: Beam phase space at the RFQ exit from the
IMPACT-T simulation (top), from the Toutatis (middle), and
from the Parmteqm simulation (bottom).

tions as:

dri
ds

=
∂H
∂pi

(5)

dpi

ds
= −

∂H
∂ri

(6)

Let ζ denote the 6N-vector of coordinates, the above Hamil-
ton’s equation can be rewritten as:

dζ
ds

= −[H, ζ] (7)

where [ , ] denotes the Poisson bracket. A formal solution
for above equation after a single step τ can be written as:

ζ (τ) = exp(−τ(: H :))ζ (0) (8)

Here, we have defined a differential operator : H : as : H :
g = [H, g], for arbitrary function g, and assumed H is not
an explicit function of s 1. For a Hamiltonian that can be
written as a sum of two terms H = H1 +H2, an approximate
solution to above formal solution can be written as [6]

ζ (τ) = exp(−τ(: H1 : + : H2 :))ζ (0)

= exp(−
1
2
τ : H1 :) exp(−τ : H2 :)

exp(−
1
2
τ : H1 :)ζ (0) +O(τ3) (9)

Let exp(− 1
2 τ : H1 :) define a transfer mapM1 and exp(−τ :

H2 :) a transfer mapM2, for a single step, the above splitting
results in a second order numerical integrator to the original
Hamilton equation as:

ζ (τ) = M (τ)ζ (0)
= M1(τ/2)M2(τ)M1(τ/2)ζ (0) (10)

Using the above transfer mapsM1 andM2, higher order
numerical integrator can also be constructed [6, 7].

The above numerical integrators Eq. 10 will be symplectic
if both the transfer mapM1 and the transfer mapM2 are
symplectic. A transfer mapMi is symplectic if and only if
the Jacobian matrix Mi of the transfer mapMi satisfies the
condition:

MT
i JMi = J (11)

where J denotes the 6N × 6N matrix given by:

J =
(

0 I
−I 0

)
(12)

and I is the 3N × 3N identity matrix.
For the given Hamiltonian in Eq. 4, we can choose H1 as:

H1 =
∑
i

p2
i /2 +

∑
i

qψ(ri) (13)

Standard charged optics methods can be used to find a sym-
plectic transfer mapM1 for this Hamiltonian with the exter-
nal field from most accelerator beam line elements [8].

We can choose H2 as:

H2 =
1
2

∑
i

∑
j

qφ(ri, rj ) (14)

which is only a function of positions, i.e. H2(r). The single
step transfer mapM2 can be written as:

ri (τ) = ri (0) (15)

pi (τ) = pi (0) −
∂H2(r)
∂ri

τ (16)

The Jacobi matrix of the above transfer mapM2 is

M2 =

(
I 0
L I

)
(17)

1 For the case thatH is an explicit function of s, one can extend the variable
space and a similar solution can still be obtained [5].
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where L is a 3N ×3N matrix. For M2 to satisfy the symplec-
tic condition Eq. 11, the matrix L needs to be a symmetric
matrix, i.e.

L = LT (18)

Given the fact that Li j = ∂pi (τ)/∂rj = − ∂2H2 (r)
∂ri∂r j τ, the

matrix L will be symmetric as long as it is analytically cal-
culated from the H2. If both the transfer mapM1 and the
transfer mapM2 are symplectic, the numerical integrator
Eq. 10 for multi-particle tracking will be symplectic.
The space charge Coulomb potential in the Hamiltonian

H2 can be obtained from the solution of the Poisson equation.
In the following, we consider a coasting beam in a rectan-
gular conducting pipe. In this case, the two-dimensional
Poisson’s equation can be written as:

∂2φ

∂x2 +
∂2φ

∂y2 = −
ρ

ε0
(19)

where, ρ the charge density distribution of the beam, and
ε0 is the dielectric constant in vacuum. The boundary con-
ditions for the electric potential in the rectangular perfect
conducting pipe are:

φ(x = 0, y) = 0 (20)
φ(x = a, y) = 0 (21)
φ(x, y = 0) = 0 (22)
φ(x, y = b) = 0 (23)

where a is the horizontal width of the pipe and b is the
vertical width of the pipe.

Given the boundary conditions in Eq. 20-23, the electric
potential φ and the source term ρ can be approximated using
two sine functions as [9–12]:

ρ(x, y) =
Nl∑
l=1

Nm∑
m=1

ρlm sin(αl x) sin(βmy) (24)

φ(x, y) =
Nl∑
l=1

Nm∑
m=1

φlm sin(αl x) sin(βmy) (25)

where

ρlm =
4

ab

∫ a

0

∫ b

0
ρ(x, y) sin(αl x) sin(βmy) dxdy (26)

φlm =
4

ab

∫ a

0

∫ b

0
φ(x, y) sin(αl x) sin(βmy) dxdy (27)

where αl = lπ/a and βm = mπ/b. The above approximation
follows a numerical spectral Galerkin method since each
basis function satisfies the transverse boundary conditions
on the wall. For a smooth analytical function, this spectral
approximation has an accuracy with the numerical error that
scales as O(exp(−cN )) with c > 0 and N is the order of the
basis function used in the approximation. Substituting above
expansions into the Poisson equation and making use of the
orthonormal conditions of the sine functions, we obtain

φlm =
ρlm

ε0γ
2
lm

(28)

where γ2
lm
= α2

l
+ β2

m.
In the multi-particle tracking, the charge density ρ(x, y)

can be represented by:

ρ(x, y) =
Np∑
j=1

wδ(x − x j )δ(y − yj ) (29)

where w is the charge weight of each individual particle and
δ is the Dirac function. Using Eq. 26 and Eq. 28, we obtain:

φlm =
1

ε0γ
2
lm

4
ab

w
∑
j

sin(αl x j ) sin(βmyj ) (30)

and the potential as:

φ(x, y) =
1
ε0

4
ab

w
∑
j

∑
l

∑
m

1
γ2
lm

sin(αl x j )

sin(βmyj ) sin(αl x) sin(βmy) (31)

Now, the Hamiltonian H2 can be written as:

H2 =
1

2ε0

4
ab

w
∑
i

∑
j

∑
l

∑
m

1
γ2
lm

sin(αl x j )

sin(βmyj ) sin(αl xi) sin(βmyi) (32)

The one-step symplectic transfer mapM2 of a particle i for
this Hamiltonian is given as:

pxi (τ) = pxi (0) − τ
1
ε0

4
ab

w
∑
j

∑
l

∑
m

αl

γ2
lm

sin(αl x j ) sin(βmyj ) cos(αl xi) sin(βmyi) (33)

pyi (τ) = pyi (0) − τ
1
ε0

4
ab

w
∑
j

∑
l

∑
m

βm

γ2
lm

sin(αl x j ) sin(βmyj ) sin(αl xi) cos(βmyi) (34)

Using a symplectic transfer mapM1 for external field Hamil-
tonian H1 from some charged particle optics code and follow-
ing Eq. 10, one obtain a symplectic multi-particle tracking
model including self-consistent space-charge effects.

As an illustration of above symplectic multi-particle track-
ing model, we simulated a 1 GeV coasting proton beam
transporting through a rectangular conducting pipe with a
FODO lattice for transverse focusing. The initial transverse
density distribution is a Gaussian distribution and given in
Fig. 2. We computed the electric field along x axis using
above direct gridless spectral solver with 15× 15 modes and
the electric field from a 2nd order finite difference solver
with 129 × 129 grid points. The results are shown in Fig. 3.
The solution of the spectral solver agrees with the finite dif-
ference solver very well even with 15 × 15 modes due to the
fast convergence property of the spectral method.
Figure 4 shows the proton beam root-mean-square (rms)

envelope evolution through 20 FODO lattice periods.
The FODO lattice used in this example consists of two
quadupoles and three drifts in a single period. The total
length of the period is 1 meter. The 0 current phase advance
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Figure 2: Charge density distribution along x axis.

-1500

-1000

-500

 0

 500

 1000

 1500

-0.008 -0.006 -0.004 -0.002  0  0.002  0.004  0.006  0.008

f
i
e
l
d
 
(
a
.
u
.
)

size (m)

direct spectral solver
finite differencel solver

Figure 3: Electric field on x axis from the above direct
spectral solver (red) and from the 2nd order finite difference
solver (green).

Figure 4: RMS envelope evolution of the beam.

is about 87 degrees and the phase advance with current is
about 74 degrees.

The symplectic integrator is normally used for long term
tracking since it helps preserve phase space structure during
the numerical integration. Figures 5 shows stroboscopic
plots (every 10 periods) of x − px and y − py phase space
evolution of a test particle through 100, 000 lattice periods
including the self-consistent space-charge forces. As a com-
parison, we also show in this plot the phase space evolution
of the same initial test particle using the standard momen-
tum conservation particle-in-cell (PIC) method with a 2nd
order finite difference solver for space-charge calculation.
In general, the two models show similar shapes in phase
space. However, looking into the details of the phase space,
the two models show quite different structures. The single
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Figure 5: Stroboscopic plot (every 10 periods) of phase
space evolution of a test particle from the symplectic-spectral
model (top and 3rd) and from the PIC-finite difference model
(2nd and bottom).

particle phase space from the PIC model shows a dense core
while the symplectic multi-particle model shows a nearly
hollow core. Figure 6 shows the 4-dimensional emittance
growth evolution from the symplectic model and from the
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PIC model. It is seen that the symplectic model shows a
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Figure 6: Four dimensional emittance growth evolution from
the symplectic multi-particle spectral model (red) and from
the PIC finite difference model(green).
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Figure 7: Parallel speedup of the symplectic tracking model
on a Cray XC30 computer.

much smaller emittance growth than the PIC model does.
This emittance growth is a numerical artifact due to the small
number of macroparticles (50, 000) used in the simulation.

The symplectic multi-particle model with a gridless spec-
tral solver can be used for long-term tracking study in-
cluding space-charge effects. However, the computational
complexity of the model scales as O(Nl × Nm × Np).
The standard PIC model can have a computational cost of
O(Np)+O(NgridlogNgrid) when an efficient Poisson solver
is used. This suggests that the PIC model should be faster
than the symplectic multi-particle model on a single pro-
cessor. However, the symplectic multi-particle model can
be very easily parallelized on a multi-processor computer.
One can distribute the macroparticles uniformly across all
processors to achieve a perfect load balance. By using a
spectral method with exponentially decreasing errors, the
number of modes Nl × Nm can be kept within a relatively
small number, which significantly improves the computing
speed. Figure 7 shows the parallel speed up of the symplec-

tic multi-particle tracking model as a function of the number
of processors for a fixed problem size, i.e. 50, 000 particles
and 15 × 15 modes. It is seen that the model has an almost
linear scaling up to 500 processors. This shows that the
symplectic multi-particle spectral tracking model can have
a good scalability on parallel computers.

CONCLUSION
In this paper, we have shown two improvements to the IM-

PACT code suite. The new time-dependent RFQ model with
3D space-charge solver enables the IMPACT code suite to
simulate low energy high intensity proton/ion beam through
an RFQ. The new symplectic multi-particle spectral model
also enables the code for long term tracking including space-
charge effects.
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