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Coauthors and Related Presentations	
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§ Overview of FRIB driver linac 
• Key features 
• Requirements 

§ Accelerator physics challenges 
• Online model development 
• Tuning scheme refinement 
• Contaminant loss study 
• Residual gas stripping loss study 
• Other technical challenges 

§ Construction status and schedule 
§ Summary	

Outline	
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Overview of FRIB Driver Linac 
§ Delivers primary beams to 

production target to support 
physics experiment utilizing 
various secondary particles 

§ Accelerate all stable ion 
species with energies of 
200 MeV/u 

§ Provide beam power of 
400 kW on target 

§ CW operation 

§ Under construction next to the existing NSCL (National Superconducting 
Cyclotron Laboratory) building 

§ Experimental facility for NSCL will be utilized for FRIB after reconfiguration 
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FRIB Driver Linac Layout 
Folded Layout with Ion Source on Upper Level	
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Ion Species	 All stable ions up to 
uranium	

Energy 	 200 MeV/u	

Peak intensity	 0.7 emA	

Duty	 100% (CW)	

Average beam power	 400 kW 

Cavity type	 SC QWR, SC HWR 

Frequency	 80.5/322 MHz 

Status	 Under construction 

3 
1 

2 

target Double-folded layout 



FRIB Among High-intensity Accelerators 
Challenges Beam Power Frontier for Heavy Ion Accelerator 
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§ During the past decade, proton 

accelerators raised beam power 
to ~ 1 MW 
•  SNS (USA): 1 MW pulsed; SRF 

linac/accumulator 
•  J-PARC (Japan): 0.3 MW pulsed; 

warm linac/RCS  
•  PSI (Switzerland): 1.4 MW CW; 

cyclotron 

§  FRIB is in the same energy and 
power category (400 kW) 
•  From proton to 238U 
•  Using SRF linac from 0.5 MeV/u 

to > 200 MeV/u 
•  More than two orders of 

magnitude beam power increase 
from existing heavy ion linac 
facility 



§ High beam quality on target is required to support efficient particle separation at 
secondary beam line 

Stringent Primary Beam-on-Target Requirements to 
Support Efficient Physics Experiments 

Parameter Description Baseline Basis/Comments 

1 Beam spot size (diameter) Contains 90 % of beam, 
incl. fluctuations 1 mm Necessary for beam purity  -  scientific reach 

2 Beam trajectory on target 
reproducibility 

Position  and angle w.r.t. 
fragment separator magnet 
axis 

≤ ± 0.1 mm, 
≤ ± 3 mrad 

Position necessary for beam purity  - scientific reach 
Angle necessary to prevent primary beam hitting dipole 
Upgrade option: ≤ ± 0.1 mm, ≤ ± 2 mrad 

3 Beam angular spread  
Horizontal and vertical, 
contains ≥ 90% of beam, 
incl. fluctuations 

≤ ± 5 mrad Prevent primary beam hitting dipole – facility efficiency- operational cost 

4 Beam power control dynamic Without time structure 
change (not chopping) 10-5 – 1 

Characterization of rare isotope beams for experiments; physics experiments 
requirements 
Upgrade option:  10-8 – 1 

5 Beam energy reproducibility ≤ ± 0.5 % Facility efficiency - operational cost 

6 Beam energy spread Contains 95 % of beam, 
incl. fluctuations ≤ ± 0.5 % 

Selection of rare isotope between magnetically separated primary beam charge states 
so as to not truncate scientific reach 
Upgrade option:  ≤ ± 0.2 % 

7 Bunch length Contains 95 % of beam 3 ns 

Particle identification (TOF measurement) 
Upgrade option: 95 % in ≤ 1.5 ns and 99.9 % in ≤ 3 ns → necessary for RF separation 
of rare isotopes (spacing a few ns) – important for very proton-rich isotopes – 
scientific reach 

8 Bunch repetition rate 80.5 MHz or 
40.25 MHz 

Particle identification (TOF measurement) 
Upgrade option: 80.5, 40.25, or 20.125 MHz → necessary for RF separation of rare 
isotopes (spacing a few ns) – important for very proton-rich isotopes – scientific reach 
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§ High power: 400kW beam on target with CW operation 
• Beam loss mitigation 
» Prompt and residual radiation 

•  Prompt radiation shielding designed assuming line loss of 1 W/m 
» Potential damage to SRF cavity 

• Machine protection 
§ High availability: 90% availability for 5,500 hours of beam-on-

target (6,000-hour beam-in-linac) per year 
• Swift ion species switchover  
» Due to nature of heavy ion facility, frequent ion species switch over will be 

requested 
» Typically once in one to two weeks 
» Deep understanding of accelerator and efficient model based tuning are 

essential 

High Power and High Availability Requirements 
Pose Accelerator Physics Challenges	
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Superconducting RF Technology Extensively 
Adopted	
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β=0.53 HWR cryomodule 

Stripper 

SC solenoid  

§ Superconducting QWRs (Quarter Wave Resonators) and HWRs (Half 
Wave Resonators) are adopted to accelerate beams from 0.5 MeV/u to 
>200 MeV/u 

§ 332 SRF cavities with independent solid state amplifier	

β=0.085 QWR cryomodule 



§ Space-charge effects in low-energy front-end 
• Space-charge effects are important in front-end 

§ Acceleration of multi-charge-state beams 
• Up to five charge states are assumed to be accelerated simultaneously to 

achieve high beam intensity  
• Stringent beam-on-target requirements should be met for multi-charge-state 

beams  

§ Effect of non-axisymmetric field component at QWRs (Quarter Wave 
Resonators) 
• Non-axisymmetric nature of QWR induces dipole and quadrupole 

components  

§ Aperture optimization for beam loss detection 
§ Collimation of large angle scattered beams at a stripper 	

Key Accelerator Physics Challenges 
Identified in HB2014	
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§ Online model development 
• Flexible and powerful environment to develop commissioning software is 

essential to achieve availability goal 
• Online model is a key element for the environment 

§ Extended error studies and model enhancement to understand 
machine response to realistic errors 
• To deepen understanding of machine to optimize operation parameters and 

tuning procedures 

§ Contaminant ion species loss study 
• Specific beam loss mechanism for heavy ion accelerator with charge stripper 

§ Residual gas stripping beam loss study 
• Existence of arc section between linac segments needs to be addressed in 

mitigating uncontrolled loss from residual gas stripping 

Additional Accelerator Physics Challenges	
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§ Specific features 
• Multi charge state beam acceleration 
• Non-axial symmetric field in Quarter Wave Resonators 
• Charge stripping 

§ Strategy for online model development 
•  In-house developed envelop model: FLAME 
» Prototyped with Java and ported to C++ to improve performance and interface to C

++/Python 
» Linear optics without space charge 
» To cover basic tunings including orbit correction, rms matching, phase/amplitude 

tuning 
•  IMPACT as backup 
» Reference code in designing FRIB lattice 
» Reasonable execution speed turning off space-charge (~1s for Linac Segment 1) 
» To cover special tuning such as halo mitigation and 2nd order achromat tuning 
» Also serve as virtual accelerator to benchmark tuning algorithms 

Online Model Development [1/3] 
Two Modeling Engine Adopted to Complement Each Other	
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§ FLAME online model and Dakota optimizer with direct Python interface 
§ Dakota optimizer provides powerful optimization capability 

• Local, global, and hybrid optimization methods 

§ IMPACT-based online model to validate physics algorithm 

 	

Online Model Development [2/3] 
Flexible and Efficient Scripting Environment Developed	

M. Ikegami, July 2016 HB2016 Workshop , Slide 13 

Python	
FLAME 

online model	
Dakota 

optimizer	

IMPACT	

Communication through 
shared memory 
EPICS protocols 
File-based communication 

G. Shen 
K. Fukushima 
Z. He 
D. Maxwell 

IMPACT-based virtual accelerator 

EPICS IOC	

Real accelerator	

In-house developed utility	



§ Major commissioning applications prototyped with developed 
environment 
• Phase/amplitude tuning for cavities 
• Orbit correction 
• Transverse/longitudinal matching 
• Energy manager (retuning with new cavity setting) 
» Java prototype of FLAME has been used for prototyping so far 
» We are converting them to use FALME 

Online Model Development [3/3] 
Major Commissioning Applications Prototyped	
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Z. He 

Example: Transverse matching to charge stripper 



Extended Error Studies 
Example: Voltage Deviation for Quarter Wave Resonators 
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§ Performance of each cavity is different in real life (assumed same in design) 
§ Amplitudes of all QWR cavities are randomly off by maximum of ±20%, cavity 

phases are adjusted to keep the same synchronous phases as in the design 
case (can be set in a real machine) 

§ Longitudinal acceptance reduced by 15%, but no beam loss occurred 
§ Output energy varied within ~1% 
§ Matched input conditions slightly change, but can be rematch at entrance  

Segment 1 longitudinal acceptance 
    30 π-ns-keV/u     27 π-ns-keV/u 
nominal voltages   ±20% randomly off   

Q. Zhao (TUAM5Y01) 



§ 3D simulations of dipole bends with space-charge and full fringe help 
verify that early species separation preserves beam quality 

Continuing Efforts to Improve Front-End Model 
Example: Warp Simulation for Charge Selection	
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§ In generating a heavy ion beam with ECR ion source, other ions but 
with similar Q/A can contaminate the beam 

§ Contaminant will be accelerated with intended ions 
§ After stripper, contaminant can have very different Q/A after charge 

stripper as lighter ions are easier to be fully stripped 
Example:   238U34+ (Q/A=0.143)    238U78+ (Q/A=0.328) 

   14N2+ (Q/A=0.143)    14N7+ (Q/A=0.5) 

§ Contaminant with very different Q/A has a mismatch to the optics, 
which can result in a beam loss after charge stripper 

Contaminant Ion Species Loss Study [1/2] 
Loss Mechanism Identified	
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§ Example simulation with IMPACT ((Q/A)contaminant/(Q/A)intended=1.2) 	

Contaminant Ion Species Loss Study [2/2] 
Finalizing Collimator Design with Extensive Simulations	
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§ FRIB driver linac is designed to accelerate up to five charge states 
§  If residual gas stripping occurs in linac segments, generated ions with irregular 

charge state likely stay in acceptance 
§ However, if residual gas stripping occurs in dispersive regions, generated ions 

with irregular charge state can have significantly different beam trajectory and 
result in a beam loss 

§ Charge selector located in the first folding segment will be a notable gas 
source which can cause residual gas stripping with significant rate	

Residual Gas Stripping Loss Study [1/2] 
Loss Mechanism Identified	
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Facility for Rare Isotope Beams
FRIB Parameter List

FRIB-T10501-BL-000002-R013 Page 15 of 38  
Issued 8 April 2014  

Folding Segment 1 Ideogram 
Date 4/3/2014

16.7 MeV/u 
U33+, U34+ 

Charge 
stripper 

Charge selector 
U76+, U77+, U78+, U79+, U80+ 

F. Marti / T. Maruta 



§ Example IMPACT simulation for a case where residual gas stripping is 
localized at charge selector	

Residual Gas Stripping Loss Study [2/2] 
Establishing Collimator Design to Localized Losses	
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§ Charge stripper for high power 
heavy ion beam 
• Liquid lithium film to sustain high 

energy deposition	

Technical Challenges 
Specific to Heavy Ion High Power Accelerator	
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§ Machine protection against 
heavy ion beam loss 
• Detection of beam loss in low 

energy section 
• Planned to cover with multiple 

detection method with different 
sensitivity and response time 
» Differential beam current monitoring 
» Halo monitoring ring 
» Neutron detector 

Z. Liu (WEPM8X01) F. Marti (TUPM2X01) 



Construction Status: Entire Facility 
Bringing Building to Completion 
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Construction Status: Linac Building 
Transfer Line Installation Started; Completing Front-End Part	
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Transfer line installation in Linac Tunnel Linac Surface Building 
Ground Floor 



Construction Status: Front End 
Installation Started; Getting Ready for Commissioning 
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ARTEMIS 14 GHz ECR ion 
source on HV platform 

FE equipment racks installed 

HV platforms, LEBT stands 
with magnets and solenoids 

RFQ cooling skids ECR cooling skids 



§ September 2016: Ion source beam commissioning start 
§ December 2016: RFQ high power test start 
§ February 2017: RFQ beam commissioning start 
§ May 2018: Linac segment 1 beam commissioning start 
§ Fiscal year 2021: Start of user operation and beam power ramp up	

Path Forward	
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§ Key requirements for FRIB driver linac reviewed 
§ Accelerator physics challenges are identified and being addressed 

• Online model development 
• Tuning scheme refinement 
• Contaminant loss study 
• Residual gas stripping loss study 
• Other technical challenges 
» Liquid lithium stripper development 
» Heavy ion beam loss detection for machine protection 

§ Construction is on track  
• Front-end commissioning will be started in September 2016	

Summary	
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