

High-Intensity Heavy Ion Accelerator Facility (HIAF)

Status and challenges of HIAF project in China

<u>Hongwei Zhao,</u> Jiangcheng Yang

On behalf of HIAF project team

Institute of Modern Physics (IMP) ,Chinese Academy of Sciences Lanzhou, China

MOPM2P90

July 04th, 2016, HB2016

近代物理研究所

Institute of Modern Physics

- 1. Background and HIAF facility overview
- 2. Unique features of HIAF facility
- **3. Technical Challenges and key technology R&D**
- 4. Summary

 HIAF: One of 16 large-scale research facilities proposed in China in order to boost basic science, now under design optimization and technical R&D.
HIAF phase-I was approved officially in 31, Dec. 2015

Science motivations of HIAF phase-I :

- Nuclear Physics: High intensity radioactive beams to investigate the structure of exotic nuclei; Synthesis of new isotopes near the proton-drip line; Structure and reaction mechanism with exotic beams; Precise mass measurements for short-lived nuclei
- Nuclear astrophysics: Origin of chemical elements in cosmos; Evolution of stars and energy generation; What are the nuclear reactions that drive stars and stellar explosions?
- Atomic physics: Highly-charged atomic physics, such as, precision laser spectroscopy of highly charged ions, dielectric recombination spectroscopy, DR spectroscopy of radioactive nuclides, ...

Study a fundamental problem of QED-spontaneous electron-positron pair creation in supercritical Coulomb fields.

HIAF Layout ----Phase I

	Typical lons	Energy	Intensity
SECR	²³⁸ U ³⁴⁺	14 keV/u	50 ρμΑ
iLinac	²³⁸ U ³⁴⁺	17 MeV/u	35 рµА
BRing	²³⁸ U ³⁴⁺	0.8 GeV/u	~1.5×10 ¹¹ ppp
SRing	RIBs: neutron-rich, proton-rich	0.84 GeV/u(A/q=3)	~10 ⁹⁻¹⁰ ppp
	Fully stripped heavy ions H-like, He-like heavy ions	0.8 GeV/u(²³⁸ U ⁹²⁺)	~10 ¹¹⁻¹² ppp
MRing	²³⁸ U ⁹²⁺	0.8 GeV/u	~1.0×10 ¹¹ ppp

HIAF performance and operation modes

- Higher beam Intensity (Comparison with HIRFL-CSR):
- Primary beam intensity increases by 1000-10000
- secondary beam intensity increases by 10000
- Precisely-tailored beams: beam cooling (*Electron, Stochastic, laser*)
- Versatile operation modes: parallel operation, beam splitting

HIAF budget and site

HIAF Schedule

- High Intensity superconducting iLinac as a injector
- Two-plane painting injection scheme
- "Pre+ Ring" radioactive beam line
- Figure-8 shape ion-ion merging
- Multi-function storage ring (SRing)

iLinac: Highest beam intensity of superconducting heavy ion linac in the world

Superconducting iLinac Lattice Structure

Cavity Type 1				
Cavity type / β	QWR / 0.052			
Frequency(MHz)	81.25			
NO of cavity	15			
Epeak of cavity (MV/m)	25			
Bpeak of cavity(mT)	50			
Cavity Type 2				
Cavity type / ß	HWR / 0.10			
Frequency(MHz)	162.5			
NO of cavity	36			
Epeak of cavity (MV/m)	25			
Bpeak of cavity(mT)	50			
Cavity Type 3				
Cavity type / β	HWR / 0.15			
Frequency(MHz)	162.5			
NO of cavity	52			
Epeak of cavity (MV/m)	32			
Bpeak of cavity(mT)	41.3			
代物理研究所 Institute of Modern Physics				

Two planes painting injection supported by electron cooling

Details in Dr. W.P.Chai's presentation: WEAM8X01

Two-plane painting injection

Conclusions:

- The beam intensity could reach 2.0×10^{11} from simulation results, nearly

3 times over the conventional single-plane injection.

- 5 times enhancement factor over single-plane injection can be expected by optimizing the working point.

Details in Dr. W.P.Chai's presentation: WEAM8X01

"Pre+Ring" long time of flight separator

"Pre + Ring" long time of flight separator

>
$$^{238}U^{34+}@800MeV/u + {}^{208}Pb -> {}^{132}Sn$$

> Bp+TOF+ ΔE

The selectivity and resolution for RIB can be improved dramatically with the long time of flight

Figure "8" shape ion-ion merging

First ion-ion merging facility in the world based on storage ring

- Sharing the injection and cooling system
- "8" shape storage ring with coasting beam merging with itself scheme
- Barrier Bucket stacking

Storage ring QED-spontaneous electron-positron pair production

- No electron-electron correlation
- Ultra-low background signals
- Small angle collision provides the CM energy (6~8MeV/u) to cross column barrier
- The production is easy to separate and goes along Z axis

Bare heavy nuclei, e.g. ²³⁸U⁹²⁺, Z1 + Z2 =184 ≥ 173

Ion-ion merging Interaction region design

Ion-ion merging costing beam

Traditional colliders use bunched beam

- Beam energy is much higher. Space charge effect is not important. Luminosity is limited by intensity, because the total particle cannot increase further. Bunched beam contributes to higher particle density and luminosity.
- Avoid parasitic collision

Ion-ion merging

- Peak density in longitudinal direction is limited by space charge effect. Direct Laslett tune shift should be smaller than -0.1.
- Coasting beam scheme is equivalent to collision with the maximum density at all time.

$$L = \frac{N^2 v}{2\sqrt{\pi} \gamma \sigma_y C^2} H$$

N is limited by SC, i.e. transverse emittance and energy, independent of circumference.

The larger circumference, the higher longitudinal particle density, the lower luminosity.

Parameter	Value
Ion	²³⁸ U ⁹²⁺
Energy(MeV/u)	637(800)
Circumference(m)	483.8
Frequency(MHz)	0.50(0.52)
Crossing angle(°)	6.8
CM energy(MeV/u)	6(8)
Particle number	8×10^{10}
$\varepsilon_{x,rms}/\varepsilon_{y,rms}$ (π mm mrad)	1/1
$\beta_{x}^{*}/\beta_{y}^{*}(m)$	1/0.03
$\sigma_{x,rms}/\sigma_{y,rms}$ (mm)	1/0.173
Laslett tune shift	-0.1(-0.077)
Hourglass factor	0.9
Luminosity($cm^{-2}s^{-1}$)	5 ×10 ²³

Multi-function storage ring

Key devices

- Electron cooling
- Stochastic cooling
- Laser cooling
- Two TOF detectors

RF operations

- Bunch Rotation
- Deceleration
- Barrier bucket stacking

Operation modes

- Isochronous mode
- Normal Mode
- Internal-target Mode
- Ion-ion merging Mode

Experiment programs

- Gas-jet target experiments
- DR experiments
- > IMS & SMS
- Ion-ion merging experiments

Technical Challenges and key technology R&

- Superconducting ECR ion source
- Superconducting ion Linac
- Dynamic vacuum system
- Thin wall vacuum chamber-0.3mm

None of existing highly charged ion sources can meet HIAF requirements for the moment

lon	Bi ³⁰⁺	U ³⁴⁺
HIAF pulsed Beam Intensity (euA)	1500 (50 pμA)	1700(50 pμA)
World Record CW Intensity (euA)	710 (<24pµA)	400(<12pμA)
3 rd Generation ECRIS	SECRAL/24 GHz	VENUS/28 GHz

Intense heavy ion beam production

SECRAL High Intensity Beams

The world best performance ECRIS

SECRAL beam intensities Ion SECRAL Beam (eµA) ¹⁶**O**⁶⁺ **5000** $^{40}Ar^{11+}$ 1620 The world record beam intensities $40 Ar^{16+}$ 350 $^{40}Ca^{11+}$ 710 $^{40}Ca^{14+}$ 270 Xe²⁶⁺ 1100 Xe³⁰⁺ 320 Xe⁴²⁺ 10 LBNL VENUS **400** eµA 209**Bi**³¹⁺ **680** ²⁰⁹Bi⁴¹⁺ 100 ²⁰⁹Bi⁵⁰⁺ 10 238 33+ 202

Prototyping of HIAF Front End: LEAF Project

4th G. ECRIS $\omega_{\rm rf}$: 45 GHz P_{rf}: 20 kW Superconductor: Nb₃Sn Peak Field: 11 T Plasma chamber: Ø150 mm Goal: 2 emA U³⁴⁺ Operation: CW/pulsed **RFQ** Beam Intensity: 2 emA U³⁴⁺ **Operation: CW/pulsed** Structure: 4-vane Frequency: 81.25 MHz Input Energy: 14.0 keV/u Output Energy: 0.5 keV/u Vane Voltage: 70 kV 2 emA U³⁴⁺ LEBT

R&D No.2 HWR010 cavity and cryomodule

HWR010 cavity and cryomodule were developed for Chnia ADS project. HIAF-iLinac may use the same HWR cavity with β =0.10 and the same cryomodule.

- June 6th, 2015, pulse beam 99us@1Hz, 5.2MeV, 10.2mA
- June 24th, 2015, 5.3MeV/2.7mA/CW/14kW
- Nov.28th, 2015, 4.6MeV/4mA CW /40 min.
- Jan.2nd , 2016, 4MeV/1.7 mA CW/7.5 hours

High efficiency of Dynamic vacuum issue

To maintain extra-low and stable vacuum pressure

Beam loss mechanism:

Charge exchange of intermediate charge state ions (²³⁸U³⁴⁺) **due to collision**

$$U^{34+} + X^{n+} \rightarrow U^{35+} + X$$
 Stripping

 $U^{34+} + X^{n+} \rightarrow U^{33+} + X$ Capture

Charge exchange processes: Electron loss and capture

Electron loss and capture

Desorption from the gas-covered chamber wall (Adsorbed residual gas)

Bending magnet

CERN and GSI have done a lot of developments.

Lost ions drive a pressure bump and self amplification effect which can develop a further beam loss.

Challenges:

- How to get a high collimation efficiency of BRing? Near to 100%
- How to optimize the lattice for different type of particles?
- How to design the collimation system ?

R&D No.3

60

 A dedicated dynamic vacuum simulation code-HIAF-DYSD has been developed for optimization of dynamics design.

• New Lattice has been optimized to get high collimation efficiency, the collimation efficiency is still high in the case the scraper is 20mm from the beam edge.

Dynamic vacuum system

Test platform for desorption measurement was set up. Poster: MOPR008

NEG coating system

NEG dipole chamber coating facility (technology developed by CERN and GSI)

Non-Evaporable Getter thin films (NEG) is an excellent solution for conductance limited chambers, for stabilization of the dynamic vacuum pressure. For this purpose, three is a proposal to develop the chamber coating facility. A dipole chamber coating facility has been designed for HIAF.

Due to high ramping rates, thin wall vacuum chambers are needed for all magnets to keep eddy currents at a tolerable level.

R&D No.4 Thin wall vacuum chamber prototype

0.3 mm, 0.5m vacuum chamber prototype

- Elliptical aperture
- Stainless steel
- Ribs supporter parallel to the magnetic field lines

0.3 mm vacuum chamber design 近代物理研究所 Institute of Modern Physics

L=1.2m, 0.3mm prototype A full size prototype is under development (2.8m, 0.3mm, curved thin wall chamber)

近代物理研究所

Institute of Modern Physics

- Power supply of Bring dipole: Fast ramping rate 12T/s
- Two-plane painting injection tilted septum
- Non-interceptive beam diagnostics for high intensity beam

- HIAF will be one of the leading heavy ion accelerator facilities worldwide for nuclear physics and related researches with unique features.
- HIAF concept design has been completed and provides a basis for performance evaluation, detailed cost estimation, and technical risk assessment.
- Currently HIAF design and studies mainly focuses on beam dynamics optimization and key technology R&D. we expect to freeze the baseline of HIAF technical design in the end of this year.
- A lot of technical challenges for HIAF. Prototypes of key technologies or components were built .

Thanks for your attention!