Beam Optics of the Linac for the Rare Isotope Science Project

Jong-Won Kim Rare Isotope Science Project (RISP) Institute for Basic Science July 4, 2016

Rare Isotope Science Project (RISP)

Location of RAON

Aerial views

Land preparation, June 2016

A layout of accelerators and experimental systems

Total DC equivalent voltage: ~600 MV

	Driver Sc-Linac (SCL1+SCL2)			Post (SCL3)	Cyclotron	
Particle	Н	0	Хе	U	RI beam	proton
E (MeV/u)	600	320	251	200	18.5	70
Ι (ρμΑ)	660	78	11	8.3	-	1000
Power (kW)	> 400	400	400	400	-	70

- IF (In-flight) separation
- ISOL (ISotope On Line) separation
- ISOL+IF

RI beam production systems: ISOL and In-flight

Rare isotope beams expected at RAON

RAON will provide access to unexplored regions of the nuclear chart

Development of major accelerator components

Development of the experimental systems

Construction of the SRF test facility

Radiation shielding and RH design for in-flight separator

Compatible for remote handling (RH)

Tunnel for SCL3 (pre-stripper linac)

Three kinds of cryomodules for SCL3

Beam dynamics simulation for SCL3

Start-to-end beam optics simulation for a U beam performed in 2013.

Beam optics of the injector

RFQ beam dynamics results using PARMTEQ

Time schedule of the RISP

A two-beam operation with pre-stripper linac

Discussion with P. Ostroumov in Nov. 2014, during ICABU workshop, Daejeon

Optics study with ANL group on pre-stripper linac

Pre-conceptual design on18.5 MeV/u pre-stripper linac for the RISP/IBS.

February 26, 2016

Argonne National Laboratory Physics Division

> B. Mustapha P. N. Ostroumov, PI

Cryomodule of ATLAS intensity upgrade

Comparison of SC Linac parameters.

Parameters	RISP baseline	ANL proposal	
Number of QWR	าา	15	
(or QWR1)	22		
Number of HWR	100	40	
(or QWR2)	102	49	
Number of	E A	0	
cryomodule	54	9	
Total length	100 m	53.3 m	

*E_p assumed for RISP: 35 MeV/m, E_p by ANL group: 40 MeV/m

Two kinds of QWR's for the design study

Low- β (QWR1)

QWR1 QWR2

Electric field distributions

Parameters of the two cavities

Parameter	QWR1	QWR2
f (MHz)	81.25	81.25
β _{opt}	0.05	0.109
L _{eff} (cm)	18.5	40.2
E _{peak} /E _{acc}	5.6	5.6
B _{peak} /E _{acc} (mT/MeV/m)	7.7	7.3
R/Q (Ω)	493	552
G (Ω)	23	32
Aperture (mm)	40	40
Height (cm)	103	115
Top diameter (cm)	32	46

Cryomodule design for the linac study

First two cryomodules of QWR1

Cryomodule of QWR2

	QWR1	QWR2
Number of cryomodules	2	7
Number of cavities	15	49
Number of SC solenoids	9	28
Number of BPM	8	28
Cryomodule length	4678 mm	5941 mm
Inter-cryostat distance between flanges on beam line	436 mm	494 mm

Steering effect of QWR's

Tilt angles of drift-tube faces for steering-effect correction

QWR1: 1° tilt is the closest to the zero line for y' QWR2: $\sim 4^{\circ}$.

Beam tracking of ²³⁸U beam using TRACK

Evolution of $U^{33+,34+}$ beam envelopes (rms and full) along the MEBT and pre-stripper linac.

Beam tracking of proton beam

Evolution of **proton** beam envelopes (rms and full) along the MEBT and pre-stripper linac.

Machine error study

Error types and amplitudes for three sets of errors used in the simulations

Frror cot	Cavity & Solenoid	Cavity phase	Cavity
Enor set	misalignment (mm)	(deg)	amplitude (%)
1	0.25	0.5	0.5
2	0.25	1.0	1.0
3	0.5	0.5	0.5

*Misalignment errors are uniformly generated within the given maximum value. RF errors are generated within a Gaussian truncated at 3σ .

Correction scheme used in error simulations with corrective steering for three kinds of cryomodule

Error and correction simulation results for error sets 2 & 3.

Left: Beam centroids before (red) and after correction (blue).

Right: Corrector strength in mrad and the corresponding magnetic field integral in G*cm. → Max.: 8000 G•cm

A summary of error and correction simulation

Beam loss before and after correction

Error cot	Fraction of lost beam	Fraction of lost beam	
Enor set	before correction	after correction	
1	3 x 10 ⁻⁷	0	
2	5 x 10 ⁻⁷	1 x 10 ⁻⁷	
3	5%	0	

•Error set 1 (nominal): after corrections, no failed seeds or beam loss.

•Error set 2 (rf errors doubled): A single macro-particle was lost longitudinally by leaving the linac acceptance before it is intercepted by an aperture. This single-particle loss measures the size of longitudinal acceptance.

•Error set 3 (misalignment errors doubled) : After adjusting the correction scheme for the lost seeds, no beam loss was observed.

Comparison of longitudinal acceptance

Baseline design

Modification of starting φ_s from -90° to -60° with modification of the first two or three sections of the current RFQ \rightarrow The RFQ "filters" the longitudinal phase space formed by the MHB producing a significantly smaller emittance.

Alternative design

Cryogenic loads of an alternative design

Cryogenic heat loads for 2.0 K and 4.4 K operation for the new design

T _{op}	Cryomodules	Distribution	Total at 4.4 K
2.0 K	435 W	355 W	2.64 kW
4.4 K	985 W	355 W	1.34 kW

The new design assumes to operate QWR1 & QWR2 at 4.4 K.
The capacity of cryogenic plant considered is 2.5 kW at 4.4 K (4.2 kW for the current baseline design.)

Concluding remarks

- RISP is fully funded and plans to be completed at the end of 2021.
- The beam optics for the current baseline design was accepted in 2013.
- The number of cavity and cryomodule in the current design of the pre-stripper linac is considerably larger than the that of ANL design performed in early 2016.
- The optics study for the ANL design showed both acceptance and tolerance of the linac lattice are acceptable.

Bid for the Organization of

58th ICFA Advanced Beam Dynamic Workshop on High Intensity and High Brightness Hadron Beam

How to reach Daejeon

Daejeon, KOREA

Accommodations

Welcome to Daejeon, Korea in 2018!

· Location : SMART City, Dorvongdong Yuseong-gu, Daejeon

- · Area : Building 9,558m2, Total Space 29,512m2
- Levels : Different 5 levels
- · Accommodation : 5-star hotel(300 rooms), youth hostels(100 rooms), guest house(80 rooms)
- Other facilities : KOTREX (KOTRA Exhibition Center, <u>Daejeon</u>), Expo Park, <u>Daejeon</u> Culture and Arts Center, Municipal Museum of Fine Arts , <u>Hanbat</u> Arboretum <u>etc</u>

Hanok(Korean Traditional House) Village

Tour of Ancient Baekje Dynasty (B.C.18-A.D.660)

