Commissioning of C-ADS Linac Beam Instrumentation

Yanfeng Sui On behalf of CADS injector I BI group IHEP, CAS, China

中國科學院為能物好酒完所 Institute of High Energy Physics Chinese Academy of Sciences

Content

Introduction of China ADS

Commissioning of injector I Beam instrumentation

- >Beam position monitor
- >Beam current monitor
- >Beam emittance measurement
- >Beam profile monitor
- >Beam loss monitor

Conclusion

Introduction

Introduction

- Particle: proton
- RF frequency: 325 MHz
- Output energy: ~10 MeV
- Peak current: 10 mA
- Repetition rate: CW
- Beam power: 100 kW

Beam instrumentation of CADS injector I

Device	Accuracy	Resolution	Quantity
Beam position monitor	\pm 100um	30um	25
Wire scanner	\pm 0.5mm	50um	4+3
Beam emittance unit	10%	-	2
Beam current monitor	0.1mA	0.01mA	9
Beam loss monitor	1%	-	8
Beam phase monitor	\pm 1deg	0.5deg	3
Ionization beam profile monitor	1mm	200um	1
Electron scanner	1mm	300um	1 6

Beam position monitor

- Total of 25 BPMs have been installed along the Linac, including 14 Cold-BPMs
- The warm BPM-pickups are strip line type
- The BPMs are installed in the Q-magnets due to limited space

Beam position monitor

- Cold BPM pick-ups are buttons type due to space limitation
- Located between SCQ magnet and SRF cavity
- Several times cold test with liquid nitrogen (300K-80K) before installed in order to check the feed throughs and bellows

Beam position monitor

• Electronics

- Libera single pass –H
- Machine protection
- Beam phase monitor

Resolution of BPMs in MEBT1

MEBT1-BPM	M01
MEBT1-BPM	M02
MEBT1-BP	M03
MEBT1-BP	M04
MEBT1-BP	M05
MEBT1-BP	M06

RMS (mm)	Y	RMS (mm))
0.04699	3	0.0	0454
0.01904	6	0.03	88247
0.01286	3	0.14	2989
0.10843	5	0.01	9258
0.11022	7	0.02	25085
0.05848	2	0.03	3193

Warm bpm resolution is about 100um

Х

Resolution of cold BPMs

Cold BPM resolution

Cold BPMs resolution is better than 30um

The phase measurement

- Cavity phases are scanned by using BPMs. The cold BPMs play important roles in determining the phase of cavities
- For the upstream cavity phase measurement, we detuned the downstream cavity and use the two following BPMs to measure energy.

Beam current monitor

- Beam Current Monitors system is composed of AC Current Transformers (ACCT), Fast Current Transformers (FCT) and DC Current Transformers (NPCT).
- 3 ACCTs are located in LEBT, MEBT1 and MEBT2 separately for beam transmission measurement
- 2 FCTs located in MEBT1 and 3 FCTs located in MEBT2 also used for the measurement of beam energy.
- One NPCT in LEBT for ION source, The other NPCT in MEBT2 is used to measure the DC current of injector I.

Beam current monitor

- All CTs are shielded and installed on the ceramic tubes
- All CTs are standard products and calibrated before installation

Test bench of FCT and ACCT Calibration of DCCT

FCT between Q-maghet

Beam current monitor

Beam test

Readout system

- NPCT Based on PCI-4070+LABView+EPICS
- ACCT Based on PCI-6120+LABView+EPICS

The transmission of RFQ

- 70% duty factor, 95% beam transmission efficiency
- 90% duty factor,11 mA,31 kW proton beam with 90% beam transmission efficiency

Beam energy measurement

- Beam energy is measured with the FCTs based on the TOF (Time-OF-Flight) method
 - Base on scope
 - Base on self-developed electronics

Beam energy measurement

Result of beam energy with self-developed electronics. Phase RMS 1 Deg.

The energy of RFQ

- Two FCTs for beam energy measurement with scope
 - Carefully alignment
 - Using scope measuring the phase between two FCTs signals
 - -T=nT0+t
 - Beam energy 3.199MeV

Beam emittance measurement

- Double-slit system is chosen for its adaption to different beam conditions and the robustness
- The first slit is 0.2mm, the tungsten plated on stainless steel with cool water
- The heat load is simulated with the duty factor 0.1%
- The distance between two slits is about 300mm
- The second slit is 0.1mm, and a faraday cup at the downstream

Example of beam emittance

The beam emittance of RFQ

Double slits emittance measurement

The beam emittance of RFQ

The beam emittance of RFQ

CM1 beam emittance

Transverse emittance measurement results V.S simulation at the exit of CM1 with nominal design

rarameters		ux/uy	px/py(mm/mrau)	$\mathbf{E}_{n,rms,x/y}$ (π mm.mrau)
CM1	Simulation results (with errors)	-1.68/-2.12	1.28/2.07	0.28/0.28
exit	Measurement (Double slits)	-2.12/-1.97	1.56/1.81	0.29/0.27

Beam profile monitor

- The wire scanner with three tungsten wires (H,V,U) mounted on the fork is used
- Beam pulse frequency is reduced to 10Hz and the beam pulse length reduced to 100us or less to ensure the wire safe.
- The motion control and DAQ is based on PXI
- The wire scanners are also used to obtain beam emittance base on Quad-scan

X方向-Q110.xls.oneFit.bmp

The fitted beam size is 1.51188 (mm) The fitted data width is 4.03803 cx

Example of Transverse Profile

Beam profile monitor

- Two non-invasive beam profile measurement methods were developed for the CADS Injector I Proton Linac. IPM and electron scanner.
- IPM detect the ionized products from a collision of the beam particle with residual gas atoms or molecules present in the vacuum pipe

Non-invasive beam profile (IPM)

Parameter	Value	A Stopping power of proton in H, Bestrond Nation Total Bestrond Total
electric field intensity(V/m)	1e5	
Distance of two big plate (cm)	8	The second secon
Size of MCP (mm)	Φ75	15-2 old old i i i i ide vide video video Energy/Mer/) (A) (Bitecture (Bitect
Size of EGA (mm)	Φ 70	
Detectors	Screen	
Work mode	Ions	
magnetic field	0	

Non-invasive beam profile (IPM)

Non-invasive beam profile (electron scan)

- Using a low energy electron beam
 Instead of a metal wire to sweep through the beam. The deflection of electron beam by the collective field of the high
 Intensity beam is measured
- Gun- A Kimball Physics electron gun, model EMG-4212, 20kV, 10uA

calculated deflection as a function of the probe electron energy, linear density of proton , distance between the detector and the centre of the proton beam

Non-invasive beam profile (electron scan)

- Electron gun was test in the stand
- Different beam spot on the screen

First commissioning of electron scanner

- No clear deflection observed on the screen
 - The low energy beam is easily affected by nearby magnetic field and geomagnetic field
 - Experiment is done with narrow pulse
- Promotion
 - Replace camera with an gated one
 - Long pulse beam

Beam loss monitor

- Ionization chambers will be the main beam loss detector. But at low energies(<10MeV), ionization chambers are not effective to detect beam loss due to the shielding.
- The differential current measurement between two beam position monitor will be the primary input to the fast machine interlock system.

Beam loss monitor

 For the high energy, plastic scintillator + PMT as the fast beam loss monitor will be used for machine protection

Conclusion

- The beam diagnostics system works very well and the characteristic of beam is measured.
- The RFQ and CM1 & CM2 tuning are finished. The cold BPMs act important roles in super conduct section tuning.
- The measurement results are checked with two or more instruments for important beam parameters.
- To establish more stable and safety operation, more improvement should be done to the interlock system.
- To measure the longitudinal bunch profile in high power beam and tune the longitudinal matching, some longitudinal diagnostic should be developed such as non-intercepting bunch shape monitor based on the IPM principle and so on.

Acknowledgement

- Thanks to accelerator physicists for their advice and discussion
- Thank all members of CADS accelerator team for injector I commissioning
- Thanks are also given to the members who give help on system design and manufacture
- Thanks for people who share pictures of this talk.
- Work supported by China ADS Project (XDA03020000) and the National Natural Science Foundation of China (NO. 11205172, NO. 11475204

Thank you

中國科學院為能物現為第例 Institute of High Energy Physics Chinese Academy of Sciences