

Energy Efficiency and Availability Improvement in Control and Operation of Superconducting Cavities

Rihua Zeng, Olof Troeng RF Group, Accelerator Division, ESS ERIC Automatic Control Department, Lund University HB 2016, Malmö, July 7, 2016

- Energy Efficiency and Availability in Accelerator
- Challenges to Achieve Higher Efficiency and Availability
- Advanced Technologies makes it possible
- Some consideration/progress at ESS

Efficiency SRF Cavity at SNS(Sang-ho Kim)

Distinguish in two aspects:

- Enhance reliability in design and development stage(careful design, redundancy, high reliable key components, flexibility)
- Fault tolerance in operation stage: a mitigation strategy to the failures

Future Large Scale Accelerators (Erk Jensen, CWRF2016)

EUROPEAN SPALLATION SOURCE

FCC ee: CW, 0.8 GHz, P_{RF} total= 110 MW CLIC e+e-: Pulsed, 1.0 GHz, P_{RF} total= 180 MW

To Achieve Higher Efficiency and Availability

EUROPEAN SPALLATION SOURCE

Break through operation limitations:

- to work at nonlinearities
- to work close to limitation
- to change operation point quickly and correctly.

The Challenges

• System is usually optimized at designed operating point, while

• RF dynamics and cavity dynamics were/are often black box

- Cavity pass band modes
- Lorentz force detuning at different cavity field levels
- Lorentz force to cavity tuning transfer function
- Piezo tuner to cavity tuning transfer function (time domain, or frequency domain)
- Moto tuner to cavity tuning transfer function
- Microphonics spectrum
- System open loop matrix
- System closed loop matrix
- Cavity field behaviour close to and at quench
- Multipacting in cavity and power coupler
- Fast fault detection and fault recovery
- Power amplifier input-output characteristics (power and phase) at different modulator voltage
- Modulator ripple frequency and amplitude
- Circulator characteristics (return loss, frequency) under different power consumption, different reflection power, and working temperature
- Power amplifier bandwidth variation at different output power level
- Driver amplifier and power amplifier delay, rise time and falling time under different power level
- Phase drift in cables due to temperature or humidity changes

Insight into RF & Cavity Dynamics

- Rely heavily on high precision and online diagnostic of basic cavity parameters:
 - Cavity voltage
 - Synchronous phase
 - **QI** $\dot{\mathbf{V}}(t) = (-\omega_{1/2} + i\Delta\omega(t))\mathbf{V}(t) + \kappa_g \mathbf{I}_{\mathbf{g}}(t) + \kappa_b \mathbf{I}_{\mathbf{b}}(t)$
 - Detuning
 - R/Q
- Rely heavily on high precision and online diagnostic of critical parameters in RF power chain

Advanced Technologies Makes It Possible (Anders Johansson)

EUROPEAN

SPALLATION SOURCE

The Goal at ESS

Operation Point of Typial Power Amplifier (e.x., Klystron)

The Last Thing to Overcome

EUROPEAN SPALLATION SOURCE

Online beam phase measurement

Phase Scan vs. Transient Beam Loading

• Phase Scan

• Transient Beam Loading

Phase Scan vs. Transient Beam Loading

Accuracy and parameter used	Phase scan – signature matching	Transient beam loading – drift beam
Amplitude	±2.4%	±4%
Phase	±1°	±1°
Pulse length	<20µs	≥50µs
Beam current	<20mA	<20mA
Rep. rates	1Hz	1Hz

Improved Transient Beam Loading Method at DESY

• Rather than suffering from poor signal to noise ratio (SNR in some case <10dB), strong signal and clear information is observed

EUROPEAN SPALLATION SOURCE

Online Beam Phase Measurement

Online Beam Phase Measurement

Rihua Zeng^{*}, European Spallation Source ERIC Olof Troeng[†], Lund University, Sweden

 $\dot{\mathbf{V}}(t) = (-\omega_{1/2} + i\Delta\omega(t))\mathbf{V}(t) + \kappa_g \mathbf{I}_{\mathbf{g}}(t) + \kappa_b \mathbf{I}_{\mathbf{b}}(t)$ and let the measured terms in the time derivative of $\mathbf{V}_{\mathbf{m}}$ form

the regressor matrix,

$$\mathbf{X} = \begin{bmatrix} \mathbf{V}_{\mathrm{m}}(t_1) & t_1 \mathbf{V}_{\mathrm{m}}(t_1) & \mathbf{\check{I}}_{\mathrm{g}}(t_1) & \Gamma(t_1) \\ \mathbf{V}_{\mathrm{m}}(t_2) & t_2 \mathbf{V}_{\mathrm{m}}(t_2) & \mathbf{\check{I}}_{\mathrm{g}}(t_2) & \Gamma(t_2) \\ \vdots & \vdots & \vdots \\ \mathbf{V}_{\mathrm{m}}(t_N) & t_N \mathbf{V}_{\mathrm{m}}(t_N) & \mathbf{\check{I}}_{\mathrm{g}}(t_N) & \Gamma(t_N) \end{bmatrix}$$

where

$$\Gamma(t_k) = \begin{cases} 0 & t_k \text{ before beam start} \\ 1 & t_k \text{ after beam start} \end{cases}.$$

Then the relation

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta}$$

is approximately satisfied for some parameter vector

$$\boldsymbol{\theta} = \begin{bmatrix} \boldsymbol{\theta}_1 & \boldsymbol{\theta}_2 & \boldsymbol{\theta}_3 & \boldsymbol{\theta}_4 \end{bmatrix}^T,$$

where $\angle \theta_4$ is the beam phase that we are looking for. The least squares estimate of θ is given by

$$\boldsymbol{\theta}_{\mathrm{LS}} = (\mathbf{X}^* \mathbf{X})^{-1} \mathbf{X}^* \mathbf{y}$$

EUROPEAN SPALLATION

SOURCE

Opportunities and Challenges

• Build upon Existing High precision and online RF measurement: QI, detuning, klystron, circulator characteristics, etc..

EUROPEAN SPALLATION

SOURCE

Opportunities and Challenges

EUROPEAN SPALLATION SOURCE

• Build upon Advanced Hardware:

Error type	Required ran
Beam current variation during	<2%
pulse	
High frequency ripple in beam	<0.5%
current (>1kHz)	
Beam current variation from	<2%
pulse to pulse	
High frequency modulator	<0.02% 0.1%
ripple (>1kHz)	
Feedforward matching error for	
beam loading	200110
Microphonics induced cavity	<100Hz
detuning (including resonant	
case)	
QL spread (deviation from	<30%
optimal value (zero reflection))	
SNR from IQ detection (digital	>75dB
domain)	
SNR from phase reference	>70dB
system (including MO)	

Opportunities and Challenges

EUROPEAN SPALLATION SOURCE

- It is promising
- Uncertainties in reality.
- Interactive learn from practice(data, experiment)
- Guided by modeling (expressing uncertainty in a precise, quantitative and controlled way)

Learning from Practice: Integrate Data, Modeling and Tests

EUROPEAN SPALLATION SOURCE

Thanks!