Path to beam loss reduction in the SNS linac using measurements, simulation and collimation

Alexander Aleksandrov

Spallation Neutron Source Oak Ridge National Laboratory, USA

ational Laboratory

Why do we care about loss reduction and model based methods development

- Beam spill in SNS Linac does not limit operational beam power but still causes issues in long term
 - Equipment damage (cables, hoses, gate valves, etc.)
 - SC cavities performance degradation is suspected
- Last step in low-loss linac set up involves manual tweaking of many parameters
 - Poorly documented and based on a few people experience
 - Time consuming if significant changes to linac configuration are made
- Plan to double beam power and add new pulse 'flavor'
 - Need to reduce beam spill
 - Need to reduce machine set up time
- Model-based low-loss tuning is crucial for future high power linacs
 - SNS is ideal test bench for beam instrumentation and modeling development

Intra-beam stripping loss reduction in SCL is our first target

- Stripping rate is inversely proportional to bunch density. Increasing bunch size should reduce beam loss
- Requires precise control of 3D bunch size
 - Laser Wire, Beam Shape Monitors, BPMs, modeling techniques
 - We believe we have all these ingredients (Andrey Shishlo's talk)
- Requires reducing halo to allow for bunch core expansion

What we call 'halo'

 We adopt agreement from Workshop on Beam Halo Monitoring, SLAC National Accelerator Laboratory following IBIC 2014

Halo features relevant for this talk:

Low intensity Far from core => creates problems => requires mitigation

How we can reduce halo in SCL

- Halo collimation
 - Only practical at low energy i.e. 2.5MeV MEBT
 - Removes halo created in injector (IS + RFQ)
 - Matching between linac sections: MEBT-DTL, DTL CCL, etc.
 - Bunch core RMS matching prevents halo formation (a proposition, never proved experimentally in real linac)
 - Halo matching reduces maximum beam size
 - Trade off between RMS and halo matching to minimize overall beam spill

match core

match halo

Halo measurements

- Needs to be in a form usable for modeling
- Required for halo matching
- Useful for collimation optimization

What we call "measuring halo"

- Detecting lost particles or monitoring <u>is not</u> halo measurement in context of this talk
 - BLMs, 'Halo rings', etc.
 - Do provide some quantitate measure: 'more', 'less'
 - Useful tool for empirical loss minimization
 - We need data in form usable for beam modeling

Particle-In-Cell codes require detailed particle distribution as input

Can be produced from measured 6D phase space distribution or

under certain assumptions, from 2D projections or even 1D projections

Measuring 2D phase space at low energy

 $\sim 10^5$ dynamic range or 20ns temporal resolution

7 HB 2016

A. Aleksandrov, Path to Beam Loss Reduction in SNS Linac

Courtesy of A. Zhukov, SNS

Measuring 2-d at high energy: laser wire emittance measurement for H⁻ beam

SPALLATION

National Laboratory | SOURCE

State-of-the art diagnostics require robust
verification methods $\varepsilon_{HEBT} \approx \frac{1}{25} \varepsilon_{MEBT}$

Self-consistency check – comparison between the integration of the emittance (over the angle) with the directly measured profiles

Halo Measurement Using Large Dynamic Range Wire Scanners (1D projection)

HEBT WS04; Sep-07-2013

SPALLATION

National Laboratory | SOURCE

- SNS Wire scanner
 - charge collected on wire
- Factors limiting dynamic range
 - Capacitive coupling to beam core
 - Residual gas ionization
 - Nearby beam loss

Reconstruction of 2D distributions from 1D profiles

Comparison of measured and reconstructed profiles using modified MENT algorithm

MENT reconstruction vs. Laser Emittance measurement

Horizontal emittance, MENT reconstruction

National Laboratory SOURCE

Phase space density plot for distribution characterization

Example: comparison of phase space density measured at SNS MEBT and HEBT

Phase space density plot is independent of

- beam energy
- beam line optics
- measurement technique or simulation

National Laboratory | SOURCE

2D reconstruction example: SNS 1GeV HEBT

15 HB 2016

Halo Mitigation: Collimation at low energy

Simple concept and implementation but often hard to find space, Halo measurement can help to optimize scraper location

16 HB 2016

Example: improving collimation in SNS MEBT

MEBT optics adjustment to improve collimation

particle distribution at vertical scrapers location

Courtesy of A. Shishlo, SNS

SNS 1 GEV HEBT beam line is well equipped large dynamic range tomography development test bench

- Five high dynamic range wire scanners
- FODO line with independent magnet controls
- Laser emittance station for reconstruction validation
- Two 2-stage collimation sections as application test case

SNS 2.5MeV Beam Test Facility (BTF)

Experimental answer to:

- 1. How to construct 6D from 1D,2D,4D?
- 2. Does mismatch create halo?
- Instrumentation for direct measurement of 6D distribution function
 - summer 2016 commissioning
- Halo development experiment
 - LEDA-style FODO line
 - in planning for 2017 2018

Summary

- Model-based loss reduction is an attractive capability for SNS operation and future LINACs
- Requires accurate RMS and halo diagnostics integrated with model
- SNS linac is a good test bench for new methods development
 - Large dynamic range emittance and profile measurements
 - 2D phase space reconstruction from 1D profiles
 - 6D PIC input distribution generation from measured data
 - more
- Collimation is a proven method for loss reduction
 - Measurements and modeling provide tool for tuning for efficient operation
- Reducing beam loss due to intra-beam stripping in SNS SCL is realistic first goal to demonstrate the approach
- A lot of work in progress and future plans

Thank you for your attention!

