

RHIC Operation and Electron Lens Commissioning

Xiaofeng Gu

for E-lens team and CAD

Thank the HB 2016 Committee for invitation!

July 03 ~ July 08, 2016 The 57th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams

Outline

- **Proton Beam Intensity**
- **Electron Lens introduction**
- **E-lens Commissioning and Operation**
- **Run16 Operation with Au-Au**
- □ Summary

RHIC – a High Luminosity (Polarized) Hadron Collider

RHIC – a High Luminosity (Polarized) Hadron Collider

Intensity Limit during Run13 and Run15 (Polarized Proton)

5

Intensity during Run13 and Run15 (Polarized Proton)

Proton Beam Intensity Limit in RHIC before Run 15

 Beam-Beam DA Tracking: If intensity >2.0E11, then DA is less than 4 sigma which is not good for the proton beam life time in RHIC

There was an intensity limit in RHIC before Run15.

Reason?

2

2013 polarized proton run: if average intensity is greater than 2.0E11 the emittance would blow up and luminosity decreased.

[Yun Luo et al., PRAB19, 041002 (2016)]

7

Beam-Beam Caused Proton Intensity Limit

Reason->Beam-Beam:

- Proton-Proton lumi is limited by beam-beam. Oncoming proton beam acts as a nonlinear defocusing force, leads to beam decay, emittance increase;
- 2. Bunches with 2 collision point has more beam decay comparing with 1 collision points (less beam-beam).
- **3. Tune spread** with beam-beam is larger than without beam-beam effect.

Solution->Electron lenses (e-p):

Electron beams provide equal **but focusing force** to compensate for 1 of 2 beam-beam interactions (p-p), then increase bunch intensity (Luminosity)

Head-on beam-beam compensation

Outline

- **Proton Beam Intensity**
- **Electron Lens introduction**
- **E-lens Commissioning and Operation**
- **Run16 Operation with Au-Au**
- □ Summary

E-lens Layout

E-gun

2. IrCe and Tungsten

[Xiaofeng Gu et al., NIMA, Volume 743 (2014)]

Collector, YAG, Pinhole and BPM

Collector, YAG, Pinhole and BPM

Collector, YAG, Pinhole and BPM

14

Electron beam backscattering detector (eBSD)

17

Superconducting Solenoid

- 1. 6T field
- 2. Field straightness
- 3. Angle correctors
- 4. 2.8 m long total

Superconducting Magnet

A maximum ±50 μm deviation of the main solenoid field lines within ±800 mm

Outline

- **Proton Beam Intensity**
- **Electron Lens introduction**
- **E-lens Commissioning and Operation**
- **Run16 Operation with Au-Au**
- □ Summary

Parasitic Mode Electron Beam (2014)

- 1. Modulator current indicates 78 kHz is running.
- Blue and Yellow were running 78 kHz pulse mode with 1A simultaneously within RHIC beam abort gap;
- 3. Parasitic to RHIC beam provides more commissioning time;
- 4. Blue e-lens 78 kHz was running for 14 hours during 2013;

Electron beam profile measurement (2014)

Transverse e-Beam Alignment With Au Beam (2014)

- Two methods to do transverse position and angle alignment: BPM or eBSD (detector) [P. Thieberger, PRSTAB 19, 041002 2016]
- BPMs in both lenses to bring e- and A- beam in proximity (transverse electron beam position for blue and yellow, electron beam angle steering for yellow)
- Backscattered electron detector to maximize overlap

Transverse e-Beam Alignment With Au Beam (2014)

- Two methods to do transverse position and angle alignment: BPM or eBSD (detector) [P. Thieberger, PRSTAB 19, 041002 2016]
- BPMs in both lenses to bring e- and A- beam in proximity (transverse electron beam position for blue and yellow, electron beam angle steering for yellow)

[Peter Thieberger et al., PRAB19, 041002 (2016)]

Lattice improvements

E-lens requires π phase advance from lens to one colliding IP.

 $\pi/2$ phase advance per cell and 'ATS' style beta squeeze allow passive compensation of sextupole driving terms

Optics measured-to-model agreement quite good (10-15% beat beat) without additional correction.

Momentum aperture improved, shown by increase in tolerable radial shift: Run 12: +/- 0.7 mm radial shift; Run 15: +/- 1.25 mm radial shift

Electron Operation

TABLE I.Typical electron lens parameters for 2015 and designvalues (for up to 250 GeV proton energy).

Quantity	Unit	2015 value	Design value
Distance of center from IP10	m		3.3
Magnetic length L_e	m		2.4
Gun solenoid field B_a	Т	0.31	≤ 0.69
Main solenoid field \vec{B}_m	Т	5.0	2-6
Cathode radius (2.7σ)	mm	7.5	4.1, 7.5
rms beam size in main solenoid σ_e	μm	650	≥ 300
Kinetic energy E_e	keV	5.0	≤ 10
Relativistic factor β_e		0.14	≤ 0.2
Electron beam current I_e	mA	600	≤ 1000
Beam-beam parameter from lens ξ_e	0.001	+10	$\leq +15$

- 1. Turned on for every store (45~60 min.)
- 2. High reliability: available for all stores after running
- 3. Blue e-lens limited to ~ 500 mA by onset of e-current instability Yellow e-lens operating at > 1 A

[Wolfram Fischer et al., PRL 115, 264801 (2015)]

Electron Lens Operation

increases in *L* and ξ

quantity	unit	oper	$\operatorname{rations}$	tests for max ξ_p		
		(avg.	over 10	without	with	with
		\mathbf{best}	$\operatorname{stores})$	e-lens	e-lens	e-lens
		2012	2015		2015 -	_
bunch intensity N_p	10^{11}	1.6	2.25	2.6	2.15	2.0
no of bunche k_b		109	111	48	111	30
$\beta_{x,y}^*$ at IP6, IP8 (p+p)	m	0.85	0.85		0.85 -	_
$\beta_{x,y}^{*}$ at e-lens (p+e)	m	10.5	15.0		15.0 -	_
lattice tunes (Q_x, Q_y)		(0.69)	5,0.685)	-(0.6	95,0.68	5) -
rms emittance ϵ_n	$\mu{ m m}$	3.3	2.8	3.5	2.4	1.9
rms beam size IP6/8 σ_p^*	$\mu{ m m}$	165	150	170	150	125
rms beam size e-lens σ_p	$\mu{ m m}$		630	700	645	520
rms bunch length σ_s	m	0.63	0.70	0.77	0.70	0.56
hourglass factor H		0.74	0.75	0.78	0.81	0.86
beam-beam param. ξ_p/IP	0.001	-5.8	-9.7	-9.1	-10.9	-12.6
# of beam-beam IPs		2	$2+1^{*}$	2	$2 + 1^*$	$2 + 1^*$
luminosity \mathcal{L}_{peak} 10 ³⁰ cm ⁻¹	$^{-2}s^{-1}$	46	115	72	115	40
luminosity $\mathcal{L}_{avg} = 10^{30} \text{cm}^3$	$^{-2}s^{-1}$	33	63			

Note: It is possible that higher beam-beam parameters ξ can demonstrated in the future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)

Electron Lens Operation

increases in *L* and ξ

quantity	unit	oper	$\operatorname{tations}$	tests for max ξ_p		
		(avg.	over 10	without	with	with
		\mathbf{best}	$\operatorname{stores})$	e-lens	e-lens	e-lens
		2012	2015		2015 -	_
bunch intensity N_p	10^{11}	1.6	2.25	2.6	2.15	2.0
no of bunche k_b		109	111	48	111	30
$\beta^*_{x,y}$ at IP6, IP8 (p+p)	m	0.85	0.85		0.85 -	_
$\beta_{x,y}^{*,v}$ at e-lens (p+e)	m	10.5	15.0		15.0 -	_
lattice tunes (Q_x, Q_y)		(0.695)	5,0.685)	-(0.6)	95, 0.68	5) -
rms emittance ϵ_n	$\mu{ m m}$	3.3	2.8	3.5	2.4	1.9
rms beam size IP6/8 σ_p^*	$\mu { m m}$	165	150	170	150	125
rms beam size e-lens σ_p	$\mu{ m m}$		630	700	645	520
rms bunch length σ_s	m	0.63	0.70	0.77	0.70	0.56
hourglass factor H		0.74	0.75	0.78	0.81	0.86
beam-beam param. ξ_p/IP	0.001	-5.8	-9.7	-9.1	-10.9	-12.6
# of beam-beam IPs		2	2+1*	2	$2+1^{*}$	$2+1^{*}$
luminosity \mathcal{L}_{peak} 10 ³⁰ cm ⁻	$^{-2}s^{-1}$	46	115	72	115	40
luminosity $\mathcal{L}_{avg} = 10^{30} \text{cm}^3$	$^{-2}s^{-1}$	33	63			

L_{peak} 2.5× increase L_{avg} 1.9× increase

Note: It is possible that higher beam-beam parameters ξ can demonstrated in the future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)

Electron Lens Operation

quantity	unit	ope	rations	tests	tests for max ξ_p		
		(avg.	over 10	without	with	with	
		\mathbf{best}	$\operatorname{stores})$	e-lens	e-lens	e-lens	
		2012	2015		-2015 -	_	
bunch intensity N_p	10^{11}	1.6	2.25	2.6	2.15	2.0	
no of bunche k_b		109	111	48	111	30	
$\beta_{x,y}^*$ at IP6, IP8 (p+p)	m	0.85	0.85		-0.85 -	_	
$\beta_{x,y}^{*}$ at e-lens (p+e)	m	10.5	15.0		- 15.0 -	_	
lattice tunes (Q_x, Q_y)		(0.69)	(5, 0.685)	-(0.6)	395, 0.68	5) -	
rms emittance ϵ_n	$\mu{ m m}$	3.	effect o	f 3.5	2.4	1.9	
rms beam size IP6/8 σ_p^*	$\mu\mathrm{m}$	16		170	150	125	
rms beam size e-lens σ_p^P	$\mu { m m}$	_ n		e 700	645	520	
rms bunch length σ_s	m	0.63	0. <mark>7</mark> 0	0.77	0.70	0.56	
hourglass factor H		0.74	0.75	0.78	0.81	0.86	
beam-beam param. ξ_p/IP	0.001	-5.8	-9.7>	-9.1	-10.9	-12.6	
# of beam-beam IPs		2	2+1*	2	$2+1^{*}$	$2+1^{*}$	
luminosity \mathcal{L}_{peak} 10 ³⁰ cm ⁻¹	$^{-2}s^{-1}$	46	115	72	115	40	
luminosity $\mathcal{L}_{avg} = 10^{30} \text{cm}^3$	$^{-2}s^{-1}$	33	63				

L_{peak} 2.5× increase L_{avg} 1.9× increase

Note: It is possible that higher beam-beam parameters ξ can demonstrated in the future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)

Electron Lens Operation increases in *L* and ξ

quantity	unit	operations		tests for max ξ_p			
		(avg.	over 10	without	with	with	
		best	$\operatorname{stores})$	e-lens	e-lens	e-lens	
		2012	2015		2015 -	_	
bunch intensity N_p	10^{11}	1.6	2.25	2.6	2.15	2.0	
no of bunche k_b		109	111	48	111	30	
$\beta_{x,y}^*$ at IP6, IP8 (p+p)	m	0.85	0.85		0.85 -	_	
$\beta_{x,y}^{*,\circ}$ at e-lens (p+e)	m	10.5	15.0		15.0 -	_	
lattice tunes (Q_x, Q_y)		(0.69)	5,0.685)	— (0.6	95, 0.68	5) —	
rms emittance ϵ_n	$\mu{ m m}$	3.	effect o	f ³ e	effect c	of ⁾	<i>ξ</i> +38%
rms beam size IP6/8 σ_p^*	$\mu{ m m}$	16	ow lattic		otron k	5	w/o and w/
rms beam size e-lens σ_p	$\mu{ m m}$	_				0	alactron long
rms bunch length σ_s	m	0.63	0.70	0.77	0.70	0.56	election lens
hourglass factor H		0.74	0.75	0.78	0.81	0.86	
beam-beam param. ξ_p/IP	0.001	-5.8	-9.7>	-9.1	<u>-10≯</u>	-12.6	
# of beam-beam IPs		2	2+1*	2	$2+1^{*}$	$2+1^{*}$	
luminosity \mathcal{L}_{peak} 10 ³⁰ cm ⁻	$^{-2}s^{-1}$	46	115	72	115	40	
luminosity $\mathcal{L}_{avg} = 10^{30} \text{cm}^{-1}$	$-2s^{-1}$	33	63				

 L_{peak} 2.5× increase L_{avg} 1.9× increase

Note: It is possible that higher beam-beam parameters ξ can demonstrated in the future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)

Tune spread Compensation with 0BB from e-lens (PP run)

- 1. e-p collision (only negative beam force), no p-p
- 2. Incoherent tune vs e-beam current
- 3. Incoherent tune vs e-beam size
- 4. e-lens creates as much $\Delta Q = 0.013$ as one beam-beam collision

Demonstration Tune Spread Compensation

IP10

IP8

IP6

- 1. tune spread without bb and without e-lens
- 2. tune spread expands with bb

3. tune spread contracts again with bb and e-lens, but only up to \sim 750 mA (first such direct observation)

4. tune spread is only compressed to the value without bb, even with ecurrents up to 1030 mA

Intensity Limit during Run13 and Run15 (Polarized Proton)

L_{peak} +150% *L_{avg}* +90%

Outline

- **Proton Beam Intensity**
- **Electron Lens introduction**
- **E-lens Commissioning and Operation**
- **Run16 Operation with Au-Au**
- □ Summary

Intensity RHIC during 2016 Au-Au

Au Bunch Intensity Evolution

$$L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\varepsilon(t)\beta^*(t)} h(\beta^*, \sigma_s, \theta)$$

AGS $12 \rightarrow 6 \rightarrow 2$ merge ultimate goal (25% more) 2.5 0 Au bunch intensity, beginning of store [10⁹] main limits: 2.0 - injectors output - transition instability 1.5 in RHIC (e-clouds) - presently Landau cavity RF amplifiers 1.00.5 Wolfram Fischer IPAC16-WEZA01 0.0H. Huang, K. Gardner, $\frac{2020}{36}$ 2025 2000 2005 2010 2015 K. Zeno, RF, et al. Time [year]

Peak and Average Luminosity

- 1. Average all peak luminosity: 80% more
- 2. Average all average luminosity: 60% more
- 3. Excluded 12 extremely low intensity store for Run14 for luminosity.

Outline

- **Proton Beam Intensity**
- **Electron Lens introduction**
- **E-lens Commissioning and Operation**
- **Run16 Operation**
- **G** Summary

- Head-on beam-beam compensation scheme in operation in 2015, consisting of new lattice (RDT compensation) + e-lenses (DQ compensation) L_{peak} +150% L_{avg} +90%
- 2. Higher ξ /IP possible, presently constrained by injectors (potential for $3\sim 4 \times L$ in future runs)
- 3. The gold (Au) intensity in the RHIC during the 2016 run exceeded the previously achieved intensity by 28%. L_{peak} +80% L_{avg} +60%
- 4. There is **20%** (compared with the max. intensity in 2016) more Au intensity available from AGS.

Brookhaven National Laboratory

M. Anerella, M. Bai, C.D. Dawson, A.K. Drees, B. Frak, G. Ganetis, D.M. Gassner, R.C. Gupta, P. Joshi, K. Hock, L. Hoff, P. Kovach, R. Lambiase, K. Mirabella, M. Mapes, A. Marone, A. Marusic, K. Mernick, M. Minty, C. Montag, J. Muratore, S. Nemesure, S. Plate, G. Robert-Demolaize, L. Snydstrup, S. Tepikian, C.W. Theisen, J. Tuozzolo, P. Wanderer, W. Zhang **STAR** and **PHENIX** experiments – supported e-lens commissioning

Institutions

FNAL: TEL experience, beam-beam experiments and simulations **US LARP:** beam-beam simulation **CERN:** beam-beam experiments and simulations

Individuals

H.-J. Kim, V. Shiltsev, T. Sen, G. Stancari, A. Valishev, G. Kuznezov, FNAL;
G. Kuznezov, BINP; X. Buffat, R. DeMaria, J.-P. Koutchouk, T. Pieloni, F.
Schmidt, F. Zimmermann, CERN; V. Kamerdzhiev, FZJ; A. Kabel, SLAC;
P. Goergen, TU Darmstadt