

Beam Dynamics Design of CIADS linac

Shuhui Liu

On behalf of Linac Center

Institute of Modern Physics, CAS

General introduction of CIADS

- **Room temperature section**
- Superconducting section
- High energy beam transport line

General introduction of CIADS

- Room temperature section
- Superconducting section
- High energy beam transport line

General introduction of CIADS IMP

China Initiative Accelerator Driven System (CIADS)

- Approved in Dec. 2015, CD0
- Leading institute: IMP
- Budget: >1.8B CNY (Gov. and Corp.)
- Location: Huizhou, Guangdong Prov.
- **Contribution Partners:** IHEP, CASHIPS, CIAE, CGN Proton LINAC:

~600 MeV

10 mA

6MW

cw mode

Room temperature section

Superconducting section

High energy beam transport line

Special functions of RT front end for CIADS

Low-Energy Beam Transport (LEBT)

① Scrape 20% or more particles to get a smaller transverse emittance

(2)Remove ²H⁺ and ³H⁺ particles to avoid them losing in RFQ cavities

③ Transport and match beam to RFQ

Radio-Frequency Quadrupole (RFQ)

Optimize RFQ design with a smaller longitudinal emittance (RMS & total longitudinal emittance)

Medium-Energy Beam Transport (MEBT)

- **(1)** Measure beam parameters
- (2) Transport and match beam to RFQ

LQ SN D-box SN RFQ

scrap the outer particles with large size and large divergence angle

- Good transverse beam quality through "spot-source" scraping
- Remove ²H⁺ and ³H⁺ by bending magnet in case of losing in RFQ

Parameters	RFQ for injectorII	RFQ2
Inter-vane voltage(kV)	65	70
KP factor	1.2	1.32
Min.aperture(mm)	3.2	3.33
Modulation	1-2.38	1-2.19
Syn.Phase(deg)	-90 ~ -22.7	-90 ~ -25
Long.Emittance_rms(keV ns)	0.0534	0.0506
Long.Emittance_max(keV ns)	2.4267	1.9156
Lcavity/Lelectrode(cm)	420.8/419.2	450
Transmission(%)	99.6	99.4
Cell number	192	247

Room temperature section

Superconducting section

High energy beam transport line

Superconducting section

- 1. Less SC cavity family
- 2. High acceleration efficiency
- 3、High power utilization
- 1. Phase advance per meter continuous and smooth
- 2、Keep envelope smooth
- 3. Less than 90° of zero-current period phase advance to avoid envelope instability and resonance crossing with space charge
- Period phase advance of every segment begin with value near 90° to improve accelerating efficiency
- 5. Optimize frequency transitions and cavity types for
 smooth beam matching along the linac

Minimize the emittance growth

Avoiding beam lost

Test lattice structure robustness

David McGinnis, ESS Design Options, 4 March 2013

Variable:

Geometric beta

Algorithm:

Particle Swarm Optimization

Constraints:

Input energy: 2.1 MeV Output energy: 1.5 GeV TTF continuous

Energy gain continuous

Objective:

Cavity number Normalized power

Multiparticle simulation

- TraceWin code is used for error analysis;
 - End to end simulation including MEBT and SC section using RFQ simulated output distribution;
 - 3d cavity fields are used in the multi-particle simulations;
 - 100seeds are generated randomly for the error analysis

Error type	Static (buncher/cavity)	Dynamic (buncher/cavity)	Static (Q/solenoid)	Dynamic (Q/solenoid)
δx (mm)	0.1/1	0.002/0.01	0.1/1	0.002/0.01
δy (mm)	0.1/1	0.002/0.01	0.1/1	0.002/0.01
Rx (mrad)	2	0.02	2	0.02
Ry (mrad)	2	0.02	2	0.02
Rz (mrad)	×	×	2	0.02
δg (%)	0.5	0.25	0.5	0.05
δφ (°)	0.5	0.05	×	×
δz (mm)	0	0	0	0

Room temperature section

Superconducting section

High energy beam transport line

High energy beam transport line

Design strategy:

- Bend section is used to bend beam and meet the requirements for target.
- Collimate beam to avoid beam losses at the differential hole and other parts of the HEBT.
- Vacuum differential sectioin is used to complete vacuum transition
- Uniformity is done by the redundancy scanning magnets.
 Wobbler scanning is considered.

High energy beam transport line

Room temperature section

Superconducting section

High energy beam transport line

- The beam dynamics design of CIADS linac are presented, and the most concern is beam loss control
- The error analysis integrated with MEBT and SC section are presented
- The preliminary design for HEBT are presented, and the beam power uniformity is 97.3% on target
- More detail works need to be done

Thanks for your attention

