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FIG. 9. Threshold wake in units of the threshold wake for
AQsc =0 vs AQ,./Q;s for different line densities: w = 1,
circles, solid line; w = —1/2, squares, short dashed line.




Stability Issues of Low-Energy Intense Beams
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FIGURE 8. Left: The transverse wake force shifts mostly the azimuthal 0 mode downward but
not the other modes. Instability occurs when the 0 and —1 modes meet with each other. Right:
The space-charge force in the absence of the wake forces shifts all modes downward with the

exception of the 0 mode.
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FIGURE 9. Left: With the transverse space-charge force added to the wake forces, all modes
except the 0 mode are shifted downward, thus requiring the 0 and —1 modes to couple at a much
higher current threshold. Right: When space charge reaches the critical value of £ = 5, the
—1 mode is shifted away from the 0 mode by so much that they do not couple anymore.
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q Is the space charge parameter

Head-tail modes for strong space charge

A. Burov

FNAL, Batavia, Illinois 60510, USA
(Received 11 December 2008; published 30 April 2009)

Arbitrary bunch distribution function, both longitudinal and transverse
Arbitrary RF shape
Arbitrary number of bunches, train structure, dampers

Arbitrary driving and detuning wakes.
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y" + vexp(—7%/2)y =0
y/(00) = 0
| —y ¥— the coherent tune shift IS in units

Qs2 / AQeff = Qs / qeff
AQ.. =0.52A0
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TABLE I. Eigenvalues and asymptotic values for the first ten modes of the Gaussian bunch.

k 0 1 2 3 - 5 6 7 8 9

Y 0 1.4 4.4 8.9 15 23 32 43 56 70
Vool 1 1.6 2.0 2.3 2.5 2.7 2.9 3.0 3.2 3.3
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FIG. 7. (Color) A schematic behavior of the TMCI threshold for
the coherent tune shift versus the space charge tune shift. Both

tune shifts are in units of the synchrotron tune.
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For a space-flat damper

KW — kW + ¢G

I, = | drexp(itt)p(0)7,(T)

If it is not flat, the pickup / kicker form-factors can be taken into account:

1, = [ drexp(ilt)p(0)5,(DK(T)

1, = [ drexp(ilt)p(t)5,(1)P(T)



Kappa is the intensity parameter. For RR, kappa=3.5

Courtesy of Tim Zolkin
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KW — kW + KGWH
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Coupled-Beam and Coupled-Bunch Instabilities

A. Burov*
Fermilab, PO Boz 500, Batavia, IL 60510-5011
(Dated: June 27, 2016)

A problem of coupled-beam instability is solved for two multibunch beams with slightly different
revolution frequencies, as in the Fermilab Recycler Ring (RR). Sharing of the inter-bunch growth
rates between the intra-bunch modes is described. The general analysis is applied to the RR;
possibilities to stabilize the beams by means of chromaticity, feedback and Landau damping are
considered.

http://arxiv.org/pdf/1606.07430v1.pdf
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Intrinsic LD: Octupole’s LD:
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The numerical factors have to be checked
The scaling has to be checked

Intermediate SC is interesting as well
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THRESHOLDS OF THE HEAD-TAIL INSTABILITY IN BUNCHES WITH
SPACE CHARGE

V. Kornilov, O.Boine-Frankenheim, GSI Darmstadt, and TU Darmstadt, Germany
C. Warsop, D. Adams, B. Jones, B.G. Pine, R. Williamson, STFC/RAL/ISIS, Oxfordshire, UK
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Simulation of transverse modes with their intrinsic Landau damping
for bunched beams in the presence of space charge

Alexandru Macridin, Alexey Burov, Eric Stern, James Amundson, and Panagiotis Spentzouris

Fermilab, P.O. Box 500, Batavia, Illinois 60510, USA
(Received 29 May 2015; published 22 July 2015)

Transverse dipole modes in bunches with space charge are simulated using the SYNERGIA accelerator
modeling package and analyzed with dynamic mode decomposition. The properties of the first three space
charge modes, including their shape, damping rates, and tune shifts are described over the entire range of
space charge strength. The intrinsic Landau damping predicted and estimated in 2009 by one of the authors
is confirmed with a reasonable scaling factor of =2.4. For the KV distribution, very good agreement with
PATRIC simulations performed by Kornilov and Boine-Frankenheim is obtained.
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FIG. 1. The first four modes of a 3D-G bunch in the strong
space charge regime. (a)—(d) At large g.; the modes’ spatial
distribution is nearly independent of u, i.e., X(z,u) =~ Y(z), as
predicted by Ref. [6]. (e)—(h) Comparison of the simulated modes
(solid red) with the theoretical space charge harmonics (dashed
black) [6]. The agreement is very good.

SSC: g> 2k

y" + vexp(—7%/2)y =0

the coherent tune shift is in units

Qs2 / AQeff = Qs / qeff

AQ.. =0.52A0
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FIG. 1. The first four modes of a 3D-G bunch in the strong

space charge regime. (a)—(d) At large g.; the modes’ spatial
distribution is nearly independent of u, i.e., X(z,u) =~ Y(z), as
predicted by Ref. [6]. (e)—(h) Comparison of the simulated modes
(solid red) with the theoretical space charge harmonics (dashed
black) [6]. The agreement is very good.

SSC:

e on

q>2k

ol 4 H
eff=0'2

eff_0
|mag eal imag 1
e
: F s
= .
= imag Imag N3
> h‘
(e)
e Qe =11 -1
al |mag |mag
0 2

z (rms unlts)

FIG. 2. 3D-G bunch. (a)—~(f) The mode 1 longitudinal distri-
bution, X (z, u), for different values of the space charge param-
eter g.g. Without space charge, X;(z,u) « . With increasing
Qeits X1(z,u) transforms gradually to the first space charge
harmonic [see Fig. 1(a)]. At large g.¢ X;(z, u) can be described
by a purely real function.
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FIG. 9. (a) Landau damping for KV-G bunches. Comparison
between our simulations and those of Kornilov and Boine-
Frankenheim [9]. The agreement is good. (b)—(d) Comparison
between the first two modes of KV-G beams and 3D-G beams.
(b) Landau damping. The damping of the 3D-G beams’ modes is
much larger. (c) Relative tune shift. (d) Spatial overlap of the
mode shape with the space charge harmonic [see Eq. (32)].
Unlike the Landau damping the tune shift and the modes shapes
depend very little on the transverse beam distribution, as
expected.
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FIG. 7. 3D-G bunch. The relative tune shift, QéQ” , for the
modes 1, 2, and 3 versus the space charge parameter g.¢. In the

strong space charge regime, g > x4k, A—QQJL ~ q—”el;;, in good agree-
ment with the theoretical prediction. v; = 1.4, v, = 4.4, and
v3 = 8.9 [6]. The tune shift can be fitted reasonably well for the
entire range of the space charge strength by employing Eq. (34)

(green lines).
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FIG. 6. 3D-G bunch. The Landau damping for modes 1, 2, and
3 versus the space charge parameter g.s. At small g4 the
damping increases quickly with increasing g.g. In the strong

. 4
space charge regime, g > ~4k, we find that AT~ 2.4 %,

where k is the mode number (dashed lines). This behavior is in
agreement with the theoretical predictions [6]. The proportion-
ality factor of 2.4 is characteristic of transverse Gaussian beams.
The damping rates of all three modes can be fitted reasonably
well for the entire range of the space charge strength by
employing Eq. (33) (green lines).




A. Macridin et al., 2016, to be published
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Out of the coupling resonance, the agreement with my prediction is
even better:

24k 1 > (12+14)k* /g



In 2009, theory of SSC was formulated for arbitrary SB and CB wakes,
RF form, 3D distribution functions and feedbacks.

For modes shapes and tunes, the problem is reduced to a standard
eigensystem problem of the linear algebra.

Mode shapes, tunes and damping rates for intrinsic and octupolar LD
were quantitatively predicted.

Many of the theoretical predictions are already confirmed in recent
simulations, some other are still to be done; the work is in progress.
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Particles and Waves

SSC Approximation: the general equation

SB wakes: weak and strong HT, TMCI thresholds.

CB wakes and feedbacks

Landau Damping: theory and tracking simulations

Some Results
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In general, collective beam dynamics can be approached both in the
language of particles (tracking codes) and in the language of waves
(Vlasov equation, VE).

Each of the approaches has its advantages and limitations.

Tracking codes are applicable for any problem (in principle). However,
a multi-parameter survey for multi-bunch beams still requires
enormous computing resources.

Wave approach can be many orders of magnitude faster than particle
tracking. The problem is that no effective algorithm for VE is found yet
for general space charge (SC).

Problems for VE: proper basis and Landau damping
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The problem was reduced to 1D Sturm-Liouville problem:

WEFICI] s the local space charge tune shift, transversely averaged.
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For a Gaussian bunch

y" + vexp(—7%/2)y =0

the coherent tune shift is in units

a)OQS2 /AQ = /q
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TABLE I. Eigenvalues and asymptotic values for the first ten modes of the Gaussian bunch.

k 0 1 2 3 - 5 6 7 8 9

Y 0 1.4 4.4 8.9 15 23 32 43 56 70
Vool 1 1.6 2.0 2.3 2.5 2.7 2.9 3.0 3.2 3.3
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Rates are qualitatively similar to no-space-charge case




— M, a=0.050,
—25M,, a=0.02¢,
—5M,, a=00lc,
10 Nf a=0.005 G
— exp(-Apyp )
Wiiigtthatari 1l l

~
<]
v
=
=
Hal
5

—’

300 600 900 1200 1500
turn

FIG. 10. 3D-G bunch. M, Eq. (36), versus turn number at
gers = 6 for different excitation amplitudes. M, is multiplied by a
factor inverse proportional to the excitation amplitude. The linear
regime requires an excitation amplitude smaller than 0.016,. The
exponential decay in the linear regime is consistent with the one
provided by the DMD analysis. In the nonlinear regime the long-
time behavior is very sensitive to the excitation amplitude.

Nonlinear LD
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