

Head-Tail Instability and Landau Damping in Bunches with Space Charge

V. Kornilov GSI Darmstadt, Germany O.Boine-Frankenheim GSI & TU Darmstadt

Vladimir Kornilov, HB2016, July 3-8, 2016, Malmö, Sweden

Coherent Eigenmodes

The real part of the mode frequency is not only the spectrum, it defines:

- the instability drive (↔ impedances)
- the Landau damping (↔ incoherent tune spreads)

$\Delta \Omega = \Delta \Omega_{ m Re} + i \gamma_{ m drive} + i \gamma_{ m damping}$

Coherent Bunch Eigenmodes

k=-3 k=-2 k=-1 k=0 k=1 k=2 k=3

$$\Delta Q = rac{\Delta f}{f_0} = rac{f-(p+Q_0)f_0}{f_0}$$

The coherent lines:

- Shifted by impedances, and by space-charge
- Interact (driven) with impedances Z(f)
- Interact with individual (incoherent) particle oscillations

Landau Damping: Dispersion Relation

complex coherent tune shift ΔQ for the beam without damping

The solution: collective mode frequency Ω for the given impedance and beam

Accurate predictions of the coherent tune shifts are essential for the instability thresholds, intensity limits, feedback design

Bunch Eigenfrequencies

K.Y.Ng, Physics of Intensity Dependent Beam Instabilities, 2006

Accurate predictions of the coherent tune shifts are essential for the instability thresholds, intensity limits, feedback design

Airbag Bunch Model

A bunch model with the barrier potential, rigid slices: Analytical solution for arbitrary space-charge M.Blaskiewicz, PRSTAB **1**, 044201 (1998)

$$\Delta Q_k = -rac{\Delta Q_{
m sc}}{2} \pm \sqrt{rac{\Delta Q_{
m sc}^2}{4} + k^2 Q_s^2}$$

Extended with a coherent force (the same derivation) in O.Boine-Frankenheim, V.Kornilov, PRSTAB **12**, 114201 (2009)

$$\Delta Q_k = -rac{\Delta Q_{
m sc} + \Delta Q_{
m coh}}{2} \pm \sqrt{rac{(\Delta Q_{
m sc} - \Delta Q_{
m coh})^2}{4} + k^2 Q_s^2}$$

However, scepticism has been expressed recently.

Airbag Bunch Model

The standard model for decades: The theory of F. Sacherer 1974

$$\Delta Q_{k} = -\frac{\Upsilon}{1+k} \frac{\sum i Z_{\perp}(\omega_{p}) h_{k}(\omega_{p}-\omega_{\xi})}{\sum h_{k}(\omega_{p}-\omega_{\xi})}$$

$$\omega_{p} = (p+Q_{0})\omega_{0} + k\omega_{p}$$

$$\overset{2}{\underset{k=1}{k=1}}$$

Space-Charge effect not included

The standard model for decades: The theory of F. Sacherer 1974

$$\Delta Q_{coh}$$

$$\Delta Q_{k} = -\frac{\Upsilon \sum i Z_{\perp}(\omega_{p})h_{k}(\omega_{p} - \omega_{\xi})}{1 + k \sum h_{k}(\omega_{p} - \omega_{\xi})} \overset{\sigma}{\bigcirc} \overset{\sigma}{\frown} \overset{\sigma}{\bullet} \overset{\sigma}{$$

$$\Delta Q_k = -rac{\Delta Q_{
m coh}}{1+k}$$

Space-Charge effect not included

Vladimir Kornilov, HB2016, July 3-8, 2016, Malmö, Sweden

Vladimir Kornilov, HB2016, July 3-8, 2016, Malmö, Sweden

G S

Particle Tracking Simulations

The PIC code PATRIC

- 2.5D sliced bunches
- Self-consistent space-charge, frozen space-charge
- Impedances, Wakes
- Snapshot domain (space), fixed-location domain (time)
- Tune shifts, spectra, instabilities verified with analytical theories:
 V. Kornilov and O. Boine-Frankenheim, Proc. of ICAP2009, San Francisco (2009)
 O.Boine-Frankenheim, V.Kornilov, Proc. of ICAP2006 (2006)
- Verified vs. HEADTAIL (CERN)
- Landau damping simulations, head-tail modes with space-charge: V.Kornilov, O.Boine-Frankenheim, PRSTAB 13, 114201 (2010)

Agreement between the particle tracking simulations (black line) and the airbag theory (red lines)

Effect of Space-Charge

Effect of an impedance

Agreement between the particle tracking simulations (red circles) and the airbag theory (black lines)

Confirmations by the experiment

V.Kornilov, O.Boine-Frankenheim, PRSTAB 15, 114201 (2012)

Agreement between the experiment and the airbag theory

Confirmations by the experiment

R.Singh, et.al, PRSTAB 16, 034201 (2013)

Agreement between the experiment and the airbag theory

Gaussian (longitudinal and transverse) bunch: Tune shifts are close to the airbag predictions

Landau Damping in Bunches

Landau damping in bunches exclusively due to the effect of space charge Burov, PRSTAB 2009, Balbekov, PRSTAB 2009, V.Kornilov, O.Boine-Frankenheim, PRSTAB 2010

Landau Damping due to Space-Charge

Basically, very similar to Landau damping in plasma:

Main ingredients of Landau damping:

- ✓ wave-particle collisionless interaction: *E*-field of Space-Charge
- \checkmark energy transfer: the wave \leftrightarrow the (few) resonant particles

Landau Damping

The resonant particles are in the distribution tails Thus: Landau damping depends on the transverse/longit distribution

Vladimir Kornilov, HB2016, July 3-8, 2016, Malmö, Sweden

Landau Damping

The resonant particles are in the distribution tails. Landau damping depends on the transverse/longit distribution.

Damping rate from the particle tracking simulations

Vladimir Kornilov, HB2016, July 3-8, 2016, Malmö, Sweden

Model for Landau Damping

Resonant particles for the effective Landau damping

Resulting damping range

 $\Delta Q_\eta = -\eta \Delta Q_{
m sc}$

Modulated coherent frequency

 $\Delta Q_k - k Q_s$

$$\label{eq:q} \begin{split} q &= k \frac{1-2\eta}{\eta(1-\eta)} \\ \text{Here } \eta = 0.24, \, \text{q}_{\text{max}} = 2.8 \; (\text{k=1}) \; \text{and} \\ \text{q}_{\text{max}} = 5.7 \; (\text{k=2}) \end{split}$$

Good agreement with the simulations

Model for Landau Damping

Effect of an impedance

Good agreement with the simulations: coherent shifts enhance (weaken) Landau damping

Vladimir Kornilov, HB2016, July 3-8, 2016, Malmö, Sweden

G 53 1

Model for Landau Damping

$$q=krac{lpha+1-2\eta}{(\eta-lpha)(1-\eta)}$$

Good agreement with the simulations: effect of coherent shifts on the effective damping range

Vladimir Kornilov, HB2016, July 3-8, 2016, Malmö, Sweden

G 5]

Model for Landau Damping

Coherent shifts due to impedance

Good agreement with the simulations: Landau damping of the k=0 mode due to space-charge

Vladimir Kornilov, HB2016, July 3-8, 2016, Malmö, Sweden

Conclusions & Outlook

- Landau damping is the essential part of the beam stability
- We are now able to predict the instability thresholds: accurate $Re(\Delta Q_{coh})$ and incoherent (inter. & exter.) spectrum needed
- The airbag theory for head-tail shifts due to space-charge, due to coherent effect, and the combinations, is verified by simulations and by the experiment
- The model of the effective Landau damping with the modulated coherent frequency gives correct predictions, and adequate physical understanding

Conclusions & Outlook

The dispersion relation

$$\int rac{\Delta Q_{
m coh} - \Delta Q_{
m sc}}{\Delta Q_{
m ex} + \Delta Q_{
m sc} - \Omega/\omega_0} J_x rac{\partial f}{\partial J_x} {
m d} J_x {
m d} J_y {
m d} p = 1$$

 $f(J_{x'}J_{y'}p)$ $\Delta Q_{coh}:$ $\Delta Q_{ex}(J_{x'}J_{y'}p):$ $\Delta Q_{sc}(J_{x'}J_{y}):$

no-damping coherent tune shift imposed external (lattice) incoherent tune shift space-charge tune shift

> L.Laslett, V.Neil, A.Sessler, 1965 D.Möhl, H.Schönauer, 1974

> > GSI

The resulting damping is a complicated 2D convolution of the distribution $\{df(J_x, J_y)/dJ_x\}$ and tune shifts $\Delta Q_{sc}(J_x, J_y), \Delta Q_{ext}(J_x, J_y)$

DAMPING IN SIS100 BUNCHES

• realistic beam pipe, ΔQ_{coh} , ΔQ_{sc} ramps of the SIS100 bunches.

Vladimir Kornilov, HB2016, July 3-8, 2016, Malmö, Sweden