

Space Charge Resonances in Linacs

Ciprian Plostinar Y. Liu, T. Maruta, M. Ikegami, A. Miura HB'2016 Malmö - 07/07/2016

Context

- Beam dynamics design guidelines (meta-criteria) for high intensity proton linacs (HB'10, 12, 14, etc.):
 - Avoid the 90-degree stopband (i.e zero current phase advance less than 90 degrees).
 - Envelope instability
 - Fourth order resonance (4σ =360)
 - Good matching at the beginning and at transitions between structures.
 - Smooth and continuous phase advance variation, regular lattice, adiabatic changes
 - Tune depression control
 - Tunes chosen to avoid radial-longitudinal coupling resonances
 - Hofmann Resonance Chart
 - Equipartitioning is not necessary to avoid exchange
 - Rate of exchange depends on the crossing speed
 - Individual analysis of coupling resonances, excitation level, etc.

The Beam Power Landscape

Proton/Ion Linac Development

Beam Dynamics Design Approach

SNS

Ion Species	H-	
Output Energy	1	GeV
Frequency	402.5/805	MHz
Pulse Length	1.0	ms
Peak Current	38	mA
Protons per Pulse	1.5 x 10 ¹⁴	
Repetition Rate	60	Hz
Duty Cycle	6	%
Average Beam Power	1.4	MW
Accelerating Structures	RFQ, DTL, CCL, SCL	
Accelerator Length	~257	m

J-PARC

Ion Species	H-	
Output Energy	400	MeV
Frequency	324/972	MHz
Pulse Length	0.5	ms
Peak Current	30/50	mA
Protons per Pulse	9.4 x 10 ¹³ / 1.5 x 10 ¹⁴	
Repetition Rate	25	Hz
Duty Cycle	1.25	%
Average Beam Power	80/133	kW
Accelerating Structures	RFQ, DTL, SDTL, ACS	
Accelerator Length	~244	m

Non-Equipartitioned

Equipartitioned

Beam Dynamics Design Approach

Linac4

Ion Species	H-	
Output Energy	160	MeV
Frequency	352.21	MHz
Pulse Length	0.4	ms
Peak Current	40	mA
Protons per Pulse	1.0 x 10 ¹⁴	
Repetition Rate	2	Hz
Duty Cycle	0.08	%
Average Beam Power	5.1	kW
Accelerating Structures	ctures RFQ, DTL, CCDTL, PIMS (*CCL)	
Accelerator Length	~80	m

ESS

Ion Species	Protons	
Output Energy	2	GeV
Frequency	352.21/704.42	MHz
Pulse Length	2.86	Ms
Peak Current	62.5	mA
Protons per Pulse	1.1 x 10 ¹⁵	
Repetition Rate	14	Hz
Duty Cycle	4	%
Average Beam Power	5	MW
Accelerating Structures	RFQ, DTL, SC Spokes/Elliptical	
Accelerator Length	~365	m

Equipartitioned

"Equitunes"

But, does all this matter?

- Avoiding space-charge resonances and instabilities can require considerable efforts
 - Strict phase advance laws throughout the linac
 - Working point selection limit
- Design can be suboptimal and more costly
 - Particularly true for superconducting machines
- What is the figure of merit that we are aiming for?
- Can some emittance growth be tolerated?

The ISIS Experience

Energy	70.4	MeV
Frequency	202.5	MHz
Pulse Length	200-250	μs
Peak Current	25	mA
Repetition Rate	50	Hz
Total Length	55	m
Duty Cycle	1-1.25	%

The ISIS Experience: In an ideal world...

Emittance evolution - "Operational" 1.4 1.2 ε (π.mm.mrad) 1.0 0.8 0.6 0.4 10 20 30 40 50 0 Position (m) Emittance evolution - "Model" 1.4 1.2 ε (π.mm.mrad) 1.0 -0.8 0.6 0.4 20 30 0 10 40 50

Position (m)

The ISIS Experience

- ISIS simulation model tuning:
 - Avoid mismatches
 - Avoid resonances/instabilities
 - Minimise emittance growth
- ISIS Linac tuning
 - Real-life machine tuning has different aims
 - Reduce losses
 - Control activation to allow hands-on maintenance (crucial for an old machine)
 - In reality the beam core could be mismatched, but the transmission increased

Space-charge Resonances: Experimental evidence: UNILAC

- 2009 Experiment at UNILAC in GSI
- Linac lattice modified to investigate the 90 degree stop-band - kz/kt=1 resonance
- The resulting transverse emittance growth was measured thus giving an indication of a space-charge resonant effect.
- First experimental observation of emittance growth in a linac driven by the kz/kt=1 resonance.

- Several key differences:
 - A heavy ion was used rather than a proton/H- linac.
 - Emittance ration $\varepsilon_t / \varepsilon_t$ closer to 10, which is much larger than those usually found in proton H- linacs where the ratio is closer to 1.
 - Only transverse emittance was measured
- See L. Groening et al. Phys. Rev. Lett., 103, 224801.

Experimental evidence: SNS

- SNS Experiment
 - 90 degree stop-band
 - CCL lattice modified phase advance kept constant for the test points
 - 4k=360 deg resonance
 - 2k_t-2k_z=0 coupling resonance
- Wire scanner profile measurements
 - "Beam shoulders" identified, characteristic for this resonance.
- Comparison with simulation
 - Very good agreement
- See D.-O. Jeon Talk/Paper THPM4X01
 - PRAB 19, 010101, 2016

- Beam study campaign started in 2012
 See THPWO087 IPAC'13
- A wide variety of operating modes can be deployed
 - J-PARC uses EMQs throughout the machine
- Exploring tunes outside equipartitioning
- Testing alternative lattices to reduce intra-beam stripping losses

- 2012 campaign: concentrated on SDTL
- 4 working points tested
- Both transverse and longitudinal beam parameters measured

- Procedure
 - Full machine tuning for a 15 mA operating current. Front-end and DTL settings kept constant for all measurements
 - New SDTL working point lattice deployed
 - New DTL-SDTL transverse matching
 - SDTL output measurement of transverse (wire scanners) and longitudinal (bunch shape monitors) parameters

• Phase advances for the four working points.

Simulation

• Measurement results

	a) Tt/Tz=1.0 Tt b)	t/Tz=0.9 Tt/Tz c)	=0.7 Tt/Tz=0.5			
X (tel form	L. Cardin Handler L. All Str. Links Handler 1 GUNTALI, L. Statel view NG - L. 17552 mm - L. 1	ALADIES ADDRESS ADDRES ADDRESS ADDRESS	All Constant and All Co	Tt/Tz	ε _t (Pi.mm.mrad)	ε _z (Pi.mm.mrad)
1 .			4000	1.0	0.216	0.269
	1 0.0 0.0 1.0 0.0	S D S D S D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>	5 10 20 10 40 4 10 10 31511166213702 xit Cuptomer	0.9	0.229	0.233
Y (uni ferror unit				0.7	0.253	0.223
o. ,				0.5	0.293	0.161

- 2012 campaign conclusions
 - Experimental observation of emittance exchange in a linac driven by the kz/kt=2 resonance.
 - First emittance exchange measurement in a linac with emittance ratios close to 1
 - Cases 1.0 and 0.9 consistent with simulation
 - Weak exchange for 0.9
 - Unexpected exchange for 0.7
 - Transverse mismatch at DTL-SDTL transition?
 - Unexpected transverse halo

- 2015 2016 campaign
 - Several measurements performed with different configurations
 - Time consuming
 - A lot of data to analyse
 - Encouraging results
 - For more details see Y. Liu's talk/paper TUAM6Y01

Case 1 – 40 mA

Case 2 – 40 mA

Case 3 – 40 mA

Case 4 – 40 mA

Case 5 – 40 mA

Case 6 – 50 mA

Case 7 – 50 mA

Case 8 – 50 mA

Case 9, etc. – 40 mA

Preliminary Results (40 mA)

Preliminary Results (40 mA)

Tt/T z	ε _t (Pi.mm.mr ad)	ε _z (Pi.mm.mr ad)	Obs
1.0	0.36	0.34	
0.9	0.39	0.32	2k _z -2k _t =0
0.7	0.37	0.33	
0.5	0.5	0.26	k _z -2k _t =0

- Generic beam dynamics studies of ultimate intensity limits in proton linacs
- Industry-Oxford-STFC collaboration
- Parameters Space:
 - Energy: Up to 1 GeV
 - Intensity: Up to 1 A
 - Power: Hundreds of MW
- Several options developed
 - What are the limits/bottlenecks?
 - What is the parameter space?
 - Can technology be pushed?
- Details in MOPOY047 (IPAC16)

- 1 A, NC structures
- Design avoids 2k_z-k_t=0, 2k_z-2k_t=0, k_z-2k_t=0
- Emittance growth: 30% (transv.), 10% (long)
- "No losses", but small aperture to beam size ratio.

- 0.5 A, NC structures
- Design avoids 2k_z-k_t=0, 2k_z-2k_t=0, k_z-2k_t=0
- Emittance growth: 20% (transv.), 5% (long)
- Better aperture to beam size ratio.

Conclusions and Discussion

- Existing facilities show discrepancy between simulation models and machine operation
 - Halo matching vs. core matching
 - How can this be improved?
 - What is the figure of merit that we are aiming for?
 - Can some emittance growth be tolerated?
- A better understanding of space-charge resonances is emerging, but experimental evidence and impact remain limited.
 - A more robust experimental program needed
 - SNS, J-PARC?
 - Beam physics perhaps not a priority for running facilities
 - Machines under construction
 - Linac4 is an opportunity
 - Smaller experiments like IBEX (See WEAM6X01 C. Prior) could bring interesting results