Using an Electron Cooler for Space Charge Compensation in the GSI Synchrotron SIS18

TECHNISCHE UNIVERSITÄT DARMSTADT

William D. Stem Oliver Boine-Frankenheim

Outline

- Motivation: FAIR high-intensity upgrades
- Space-charge tune shift as an intensity-limiting factor
- Electron lens tune shift compensation
- Resonance stopband analysis
- Short comment on charge exchange
- Some preliminary experimental results
 - (taken last week!)
- Outlook

Outline

- Motivation: FAIR high-intensity upgrades
- Space-charge tune shift as an intensity-limiting factor
- Electron lens tune shift compensation
- Resonance stopband analysis
- Short comment on charge exchange
- Some preliminary experimental results
 - (taken last week!)
- Outlook

High-Intensity at FAIR

TECHNISCHE UNIVERSITÄT DARMSTADT

Space-Charge Tune Shift in FAIR Beams

The space-charge-induced incoherent tune shift sets a restrictive intensity limit on beams.

$$\Delta Q_{SC,y} \approx \frac{NZ^2 r_p}{2\pi \epsilon_y \beta_0^2 \gamma_0^3 A B_f}$$

v 7 7 7

GSI FAIR reference Particle: U²⁸⁺

E, injection	11.4 MeV/u			
N	2.0e11			
B _f	0.3			
ϵ_x, ϵ_y	150,50 mm-mrad			
ΔQ_x , ΔQ_y	0.25,0.45			

Tune Spread: $Q_y = Q_{0,y} + \Delta Q_{SC,y}$

 $|\Delta Q_{SC}| \leq 0.25$ W.T. Weng, AIP Conf. Proc., 1987

 $|\Delta Q_{SC}| \approx 0.2 - 0.4$ V.D. Shiltsev, Electron Lenses for Super-Colliders, 2016

 $\Delta Q^e = (1 - \beta_e \beta_0) \frac{Z}{A} \frac{L_e r_p}{2\beta_0^2 \gamma_0} \frac{I_e}{e\pi a^2 \beta_e c}$

Electron Lenses

E lens tune shift (co-propagating):

Items we are addressing:

- How many do we need?
- What is the percentage of tune shift each lens compensator should produce?
- Half integer resonances
- Effect on both the incoherent (single particle) and coherent (envelope) stop bands
- Ionization and capture cross sections/ beam 0 lifetimes for heavy ions
- Pulsed electron beam for bunch compensation (future)

TECHNISCHE

| 6

Electron Lenses

 $\Delta Q^{e} = (1 - \beta_{e}\beta_{0}) \frac{Z}{A} \frac{L_{e}r_{p}}{2\beta_{0}^{2}\gamma_{0}} \frac{I_{e}}{e\pi a^{2}\beta_{e}c} \qquad \mathbf{n}_{e}$

Items we are addressing:

o How many do we need?

E lens tune shift

(co-propagating):

- What is the percentage of tune shift each lens compensator should produce?
- Half integer resonances
- Effect on both the incoherent (single particle) and coherent (envelope) stop bands
- Ionization and capture cross sections/ beam lifetimes for heavy ions
- Pulsed electron beam for bunch compensation (future)

Electron Lenses

= •

= •

Center ion beam in lens or suffer closed orbit distortion

- Center ion beam in lens or suffer closed orbit distortion
- Match longitudinal bunch profiles (pulsed electron beam)

Outline

- Motivation: FAIR high-intensity upgrades
- Space-charge tune shift as an intensity-limiting factor
- Electron lens tune shift compensation
- Resonance stopband analysis
- Short comment on charge exchange
- Some preliminary experimental results
 - (taken last week!)
- Outlook

April 2016 | TU Darmstadt | Schlossgartenstraße 8 | Institut Theorie Elektromagnetischer Felder | William Stem

What happens when we add an electron lens every cell?

Half Compensation

_

=

Single Particle Resonance Stopbands (Orbit Instabilities)

20

Single Particle Resonance Stopbands (Orbit Instabilities)

| 21

Outline

- Motivation: FAIR high-intensity upgrades
- Space-charge tune shift as an intensity-limiting factor
- Electron lens tune shift compensation
- Resonance stopband analysis
- Short comment on charge exchange
- Some preliminary experimental results
 - (taken last week!)
- Outlook

Cross Sections and Beam Lifetimes

Ion: U²⁸⁺ Mechanism: Ionization from free electrons

= •

Outline

- Motivation: FAIR high-intensity upgrades
- Space-charge tune shift as an intensity-limiting factor
- Electron lens tune shift compensation
- Resonance stopband analysis
- Short comment on charge exchange
- Some preliminary experimental results
 - (taken last week!)
- Outlook

Benchmarking Experiments in the SIS-18

Goals:

- Measure coherent tune shift as a function of electron density and compare with experiment
- Measure the effect of the beam offset on the closed orbit
- Measure beta beat onset as a function of electron density in the cooler

Benchmarking Experiments in the SIS-18

Goals:

- Measure coherent tune shift as a function of electron density and compare with experiment
- Measure the effect of the beam offset on the closed orbit
- Measure beta beat onset as a function of electron density in the cooler

Benchmarking Experiments

TECHNISCHE UNIVERSITÄT DARMSTADT

Electron Cooler Parameters

			\boldsymbol{U}_{kin}	6.6 keV		
			β_e	0.16		
			<i>f_{exp}</i>	2,3		
			$\beta_{x,y}$	8.0,15.0 m		
June 27, 2016		L _e	3.4 m	July 2, 2016		
Xe ⁴³⁺		I _e	0-0.6 A	C ³⁺		
\pmb{U}_{kin}	6.75 MeV/u				\boldsymbol{U}_{kin}	6.78 MeV/u
β_0	0.12				eta_0	0.12
ϵ_{χ}	36.1 mm-mrad				ϵ_{χ}	15.5 mm-mrad
ϵ_y	40.2 mm-mrad				ϵ_y	20.1 mm-mrad
$Q_{x,y}$	4.32,3.25				$Q_{x,y}$	4.32,3.25

April 2016 | TU Darmstadt | Schlossgartenstraße 8 | Institut Theorie Elektromagnetischer Felder | William Stem

Amplitude

Experimental Procedure

- Low intensity beam at injection energy Ο (<5 turn stacking)
- Measure ion current to approximate SC tune shift (should be negligible!)
- Measure beam profiles with Residual Gas Monitor (RGM) to get emittances
- Measure tune as a function of \mathbf{O} electron density
 - Used Schottky and Base Band Tune (BBQ) measurement

Tune Space

= •

Tune Space

l≟°

(Preliminary) Experimental Results!

= •

(Preliminary) Experimental Results!

Conclusions and Outlook

Conclusions:

- We are using the SIS-18 in concert with simulation tools to determine the number of electron lenses for high-intensity space charge compensation
- Instabilities/resonances uncovered in the incoherent and coherent stopbands need to be prevented for electron lens commissioning
- One compensator could only (very) partially compensate for space charge. The study will indicate the number needed for full compensation
- Ionization in the SIS18 electron cooler doesn't seem to play a major role in beam lifetime for the ionization-dominated reference particle U²⁸⁺

Future Goals:

- Beta beat and closed orbit analysis of data taken Saturday, July 2nd (5 days ago!), Collaboration with V. Chetvertkova and G. Franchetti
- Study of the incoherent beam physics with pyORBIT PIC simulations. Compare results to experiment to determine how many electron lenses are needed for compensation
- Pulsed electron lens beam to match longitudinal beam profile
- CRYRING experiments for future space-charge compensation experiments and benchmarking

CRYRING

= •

Acknowledgements and References

Experiment Team

Oliver Boine-Frankenheim, Rahul Singh, Christina Dimopoulou, Markus Steck, Sabrina Appel, Ivan Karpov

References

- M. Aiba, M. Chanel, U. Dorda, R. Garoby, J.-P. Koutchouk, M. Martini, Proc. of the Particle Accelerator Conference (PAC) 2007
- A.V. Burov, Proceedings of the 2001 Particle Accelerator Conference, Chicago (2001)
- V. Shiltsev et al., Phys. Rev. ST-AB 103501 (2008)
- V. Litvinenko, G.Wang, Phys. Rev. ST-AB
- R. Singh, Ph.D. Dissertation, TUD (2014).