

Early tests and simulations of a quasiintegrable octupole lattice at the University of Maryland Electron Ring

Kiersten Ruisard, Heidi Baumgartner, Brian Beaudoin, Irving Haber, David Matthew, Timothy Koeth

Institute for Research in Electronics and Applied Optics, University of Maryland, College Park

Nonlinear Integrable Optics

In linear lattice, tune resonances drive beam loss and halo formation.

Space charge has complex interaction with tune resonance

Add (unspecified) nonlinear potential to Hamiltonian:

$$H = \frac{p_x^2 + p_y^2}{2} + K(s)\frac{x^2 + y^2}{2} + V_{NL}(x, y, s)$$

Choose U(x,y) to be independent of s, H is conserved

For integrability, find U(x,y) that gives second invariant and satisfies Laplace's equation

Danilov, Nagaitsev, Phys. Rev. ST Accel. Beams 13, 2010

Recall U(x,y) must be independent of s in normalized particle frame

$$x_N = \chi/\sqrt{\beta(s)}$$
 $p_{x,N} = p_x\sqrt{\beta(s)} - \frac{\beta'(s)x}{2\sqrt{\beta(s)}}$

Nonlinear field V in lab frame must scale with envelope function:

 $U(x_N, y_N) = \beta(s) V(x_N \sqrt{\beta(s)}, y_N \sqrt{\beta(s)}, s)$ Normalized Hamiltonian is conserved!

Integrable Optics Test Accelerator

Test quasi- and fully integrable lattices Achieve high tune shift 0.25 Under construction 150 MeV electron beam, 2.5 MeV proton beams

Quasi-integrable Octupole lattice with octupole potential in this form:

$$V(x, y, s) = \frac{1}{\beta^{3}(s)} \frac{\kappa}{4} (x^{4} + y^{4} - 6x^{2}y^{2})$$

Leads to 1 invariant of motion:

$$H_N = \frac{1}{2} \left(p_{x,N}^2 + p_{y,N}^2 + x_N^2 + y_N^2 \right) + U(x_N, y_N)$$

University of Maryland Electron Ring

System Parameters

Beam Length 20-140ns Circulation Time 197ns Circumference 11.52 m Beam energy 10 keV Beam current 0.6 - 100mA Beam radius 0.25 - 10mm Tune $v_x \sim v_y \sim 6.6$

$$\frac{v}{v_o} = 0.85 - 0.14$$

We (typically) operate in high intensity, "extreme" space charge regime

Two pathways to quasi-integrability

Distributed Octupole Lattice

Printed Circuit Octupoles

Manufactured October 2015, peak field ~ 75 $T/m^3/A$

Maxwell 3D prediction for longitudinal profile

Octupoles installed for distributed lattice

Jan. 2016

Alternative Lattice Tune Scan Measurement

Measurements taken Feb. 2016. with pencil beam Beam survival plots, Alternative lattice, no octupole fields. (Yellow=transmission, Deep

blue= all beam lost)

Octupole Lattice Tune Scan

Measurements taken Feb. 2016. with pencil beam

Beam survival plots with octupole fields. (Yellow=transmission, Deep blue= all beam lost)

 $\stackrel{\frown}{\simeq}$ Desired Operating Point (near 2π phase advance)

WARP simulations of octupole lattice

WARP simulations of octupole lattice

Error Sources

correctors necessary

First turn beam profile measurements for 0.6 mA "pencil" beam

Ring Improvements

Longest vacuum break in UMER operational history: Feb. 23 – Jun 17.

Ring Improvements

Longest vacuum break in UMER operational history: Feb. 23 – Jun 17.

Credits:

Heidi Baumgartner (producer) Fermilab IOTA group (manufactured floor hole template)

Labor and planning:

Dave Sutter Eric Montgomery Brian Beaudoin Santiago Bernal Tim Koeth Rami Kishek Irving Haber Dave Matthew Ana Matt Teperman Kiersten Ruisard

Ring Improvements

Improvement to dynamic aperture after fixing "dogleg" misalignment (40 deg. of ring misaligned up to 8 mm in quadrupole position)

10th turn beam survival plots for 6 mA beam in standard FODO lattice (2011 data):

Hope for the alternative lattice (2016 data)?

Final Thoughts

- A distributed octupole lattice was tested
- Intuition gained "in hindsight," effects seems not be large enough to stand out above lattice errors/integer stop band
- Recently completed ring re-anchoring and re-alignment, as well as improved vertical steering, may improve signal in region of interest.
- Space charge effects still open question, "low-current" beam (60 μA) may fare better
- Priority: keep pressing forward with mechanical design for single-channel lattice.

Acknowlegements:

- The UMER group (Rami Kishek, Santiago Bernal, Dave Sutter, Eric Montgomery)
- IOTA collaboration, especially Sergey Antipov, Sasha Valishev, Sergei Nagaitsev, David Bruwhiler, Stephen Webb

UMER beams and diagnostics

I [mA]	ε _n ,rms [mm]	a _{ave} [mm]	s/s _o	c _s /v _o
0.6	0.4	1.6	0.85	0.005
6.0	1.3	3.4	0.62	0.013
21	1.5	5.2	0.32	0.022
78	3.0	9.6	0.17	0.033
104	3.2	11.1	0.14	0.035

Diagnostic	Quantity	Location	Measured Characteristic
Bergoz Current Monitor	1	Injection Line	Current vs. Time
Wall-Current Monitor	1	RC10	Current vs. Time
Beam Position Monitor	15	IC2 and 14 ring chambers	Position / Current vs. Time
YAG Crystals	1	RC17	Beam imager
Fast Screens	4	IC1 + RC3, 8, 14	Beam imager (time-resolved)
Slow Phosphor Screens	12	IC1, IC2 + Remaining RCs	Beam imager
Turn-by-turn imager	3	RC3, 8, and 14	Beam imager after Turn 1
Energy Analyzer	1	RC15	Energy profile and spread vs. time
Tomography	16	In combination with any screen	Transverse phase-space /
			emittance
Halo Monitor	16	In combination with any screen	High-Dynamic Range Halo Profile

UMER realignment parameters

Axis	Goal tolerance	Met?
Transverse, radius	0.125 μm	No, currently 0.600 µm
Transverse, height	0.125 μm	Yes
Longitudinal	0.500 μm	Yes (for 70 % of ring)
Roll	0.5 mrad	Yes
Pitch	0.5 mrad	Yes (all but 1 section)
Yaw	0.5 mrad	Only for half the ring

UMER Alternative Lattice

Pencil beam at nominal operating point, wall current monitor

Pseudo-continuous motion

Octupole lattice in Elegant

Single Channel Experiment @ UMER

IOTA-like lattice at UMER

Fractional tune 0.08 in octupole channel. Possible to increase fractional tune with the use of solenoid lenses. Frequency analysis of IOTA-like UMER (toy model)

Generating beam halo in UMER

INSTITUTE FOR RESEARCH IN ELECTRONICS & APPLIED PHYSICS

Electric quadrupole prototype

Beam halo through quadrupole mismatch Phosphor screen images

Beam halo from driven envelope oscillations PIC code phase space plots

