

LHC Injectors Upgrade

LHC Injectors Upgrade

E. Benedetto, M. Cieslak-Kowalska, V. Forte, F. Schmidt

Acknowledgements: J. Abelleira, C. Bracco, A. Garcia, G.P. Di Giovanni, B. Mikulec, G. Rumolo

E. Benedetto, HB2016 workshop, 7/7/16 Malmo, Sweden, THPM9C01

Where the LHC beams brightness is defined!

Circumference:	157m
Super-periodiciy:	16
Injection:	Multi-Turn p+ \rightarrow H-
Injection energy:	50 MeV → 160 MeV
Extraction energy:	1.4 GeV → 2 GeV
Cycle length:	1.2s
# bunches:	1 x 4 Rings
RF cavities:	h=1+2, h=16
Tunes at injection:	~ 4.3, 4.5, 1e-3
Rev. freq. (160 Me)	/): 1MHz
# protons/bunch:	1e11 to 1e13
H. emittance:	1 to 15 um
V. emittance:	1 to 9 um
L. emittance:	0.8 to 1.8 eVs

Space Charge $\Delta Q > 0.5$ @ inj

- ∆Q_{SC} > 0.5
- Upgrade from 50 MeV to 160 MeV \rightarrow factor 2 in $\beta\gamma^2$
- H- injection → loss-free + inject in the same phase space

- Can we confirm the factor 2 scaling with Space Charge simulations?
- Space Charge mitigation measures + Halfinteger correction
- ✓ Non-linear optics studies ONGOING WORK

Beam brightness: benchmark @ 50 MeV inj

Simple model to start with:

- No MT p+ injection, matched beam
- Only SC
- Only linear latti 2.5
- RF capture

Good agreement between

measurements and simple(*) simulations

- change of WP
- ~ final emittance value

Simulations with PTC-Orbit

46 mm

BSW3

BSW2

BSW1

- Injection chicane magnets ramp-down:
 - Edge effects due to rectangular magnets
 - Eddy-currents and multipolar components varying with time
 - Compensation (time varying) with trims on 2 main quads
- Chicane ramp-down shape implemented in PTC-Orbit, with errors and ripples → definition of tolerances and the function for the correctors

Again a "simple" model:

- No MT H- injection, matched beam
- Only Space Charge
- Chicane + compensation in the model

Emittance reached at the end of chicane bump ~independent of starting value

64x64x128

250k macroparticles

A more refined model:

- MT H- injection
- Stripping foil
- Chicane + compensation

MT injection with fixed offset: Final emittance as a function of injection offset. Np=350e10

- Confirmation final emittance does not depend "too much" on injection (*)
- Gives the tolerances for allowed offset mismatch at injection to be <1.7um (LIU requirements)

(*) for High Intensity beams however we will profit of proper painting!

Measures against Space Charge

- Double harmonic: h1+h2
- Acceleration (no energy flat bottom)
 - H- injection directly on accelerating bucket
 - Today: MT injection in coast, then adiabatic capture + acceleration

• Transverse painting:

- Horiz. Painting + Vert. Steering
- Today: injection offset in both planes (V steering and delay of the bump decay wrt injection timing)

• Working point

- Today limited by MT p+ injection \rightarrow losses at septum
- Not the case for H-

• Resonance compensation:

- Empirical (based on loss reduction and driven by phyiscs considerations)
- Systematic studies from turn-by-turn waiting for new BMP electronics
- Compensation of the Half-Integer

Half-integer induced beam losses

- Injection WP~(4.3,4.6)
- Affects operation if not compensated
- Subject of dedicated studies & benchmark with PTC-Orbit simulations

Waterfall plot of the measured (left) and simulated (right) longitudinal bam profile.

Simulations: Loss rate depends on beta-beating

Intensity evolution vs. time. Simulation: (A) with only space charge but no errors; (B) no space charge; (C) with quadrupolar errors (programmed Qy =4.53); (D) with quadrupolar and misalignment errors (Qy=4.53); (E) with quadrupolar errors (Qy =4.525).

- PSB is equipped with a complete set of multipoles to correct (empirically) any higher order errors
- What if we include non-linearities in our model?

Additional emittance blow-up! (knowing that eventually we can compensate them)

Other studies and next steps

• Driving terms excited by main dipoles not negligible

Normal	
h3000 =	0.01
h2100 =	0.02
h1020 =	0.006
h0011 =	0.01
h0002 =	0.02

 Non-linear chromaticity measurements for 2 different optics: ~good agreement with our current MADX model

Q	Q'	Q"	Measured Q'	stdev
		Standard w	orking point	
4.20	-3.35	45	15.1	5.7
4.30	-6.84	87	44.4	13.7
		Standard w	orking point	
3.32	-2.81	78	48.3	3
3.81	-4.97	116	112	34

 Turn-by-turn beam position measurements will be possible next year (new BPM electronics)

- Can we achieve ~factor 2 brightness with 160 MeV injection? Simulations indicate yes!
 - Simulations at 50 MeV (simple model) agree with **measurements**
 - Prediction for 160 MeV confirmed linear dependence emittance vs intensity
 - Full blown simulations to include multi-turn H- injection confirm results of simple model
 - Larger horizontal tune Qx=4.30 \rightarrow 4.42 gives extra margin
- Importance of the integer lines \rightarrow blow-up
 - Can we eventually compensate them? ...all orders! :-\
- Importance of the 2Qy=9 line
 - Compensated in operation, (incoherent) losses explained and reproduced in simulations
- Work to include non-linear terms in our model has started

LHC Injectors Upgrade

Initial beam parameters	long bunch	short bunch
Intensity [10 ¹² p]	1.39	1.32
$\epsilon_x, \epsilon_y \text{ [mm·mrad]}$	2.64, 2.05	3.24, 2.13
RF voltage (h=1, h=2) [kV]	8, 8	8, 8
RF cavities relative phase	π	0
Total bunch length [ns]	634	400
Momentum spread (1σ)	1.35×10^{-3}	2×10^{-3}
Tune Q_x, Q_y	4.28, 4.53	4.28, 4.53
Max space charge tune shift - Eq. (1.67) $\Delta Q_x, \Delta Q_y$	-0.17, -0.2	-0.26, -0.36

Table 5.3: Half-integer case - measured initial beam parameters.

High intensity beams – up to 1.6e13

Horizontal (left) and vertical (right) beam transverse distribution at the end of the injection process (~100 μ s), after 5 ms and 20 ms. Beam intensity is 1.6e13 protons and the final normalized rms emittances are 13 mm and 6 mm.

- On a straight line & depends on longitudinal emittance
- The slope for 1.20eVs is a factor 25% lower
- (in Orange: simulations adding 2012 measured set of errors)

Simulations L4 - full blown simulations

- Injection on-axis Vs, with transverse painting
 - KSW painting bump function input from ABT (J. Abelleira, C. Bracco)
 - Not optimized in Vertical
- Longitudinal distribution optimized (chopping factor and dp/p) (V. Forte, D. Quartullo)
- · Confirmed results obtained with "matched beam"

CERN

For LHC

Tables assuming	60%
chopping factor	

L4 current	60%	3.42E+12	
mA	mA	# turns	
50	30	19	
45	27	21	
40	24	23	
30	18	31	
20	12	46	
10	6	92	

For ISOLDE

L4 current	60%	100 turns	120 turns	150 turns
mA	mA	x1e10	x1e10	x1e10
50	30	1875	2250	2813
45	27	1688	2025	2531
 40	24	1500	1800	2250
30	18	1125	1350	1688
 20	12	750	900	1125
10	6	375	450	563

What if L4 current was lower? Impact on LHC

- Increase of # injected turns (from 20 to 30) will add $\sim \Delta \epsilon = 0.10 \text{ um}$
- Can be absorbed by mismatch, painting, natural emittance evolution under Space Charge

Figure 6: Simulated horizontal and vertical normalized emittance blow-up due to scattering at a 200 µg/cm² graphite foil. The multi-turn injection lasts 20 turns and the beam is not removed from the foil after injection has completed. Space-charge is not included.

Figure 7: Ratio between final ε_f (after 100 µs) and initial a emittance for different non-ideal scenarios mismatched optics, orbit offset and reduced Linac4 current). A factor of two emittance blow-up is observed or the most conservative case (d).

Setting-up PTC-Orbit

Emittance vs. Intensity curve

Emittance is preserved along acceleration

Low energy points not understood (scattering at the wire scanners, calibration, uncertainties in dp/p,...)

Measured Space Charge tune spread and losses

Order of magnitude perturbation

•Edge effect (rectangular magnet):

- k1L~ $\phi^2/2L^{-6e-3}$

•Feed-down from sextupole:

- Int(Bdl)~c0+c1 x+c2 x² +...
- x0=-50mm
- → k1L~3.4e-3

E. Benedetto, et al. IPAC14

