An advanced Procedure for longitudinal Beam Matching for SC CW Heavy Ion Linac with variable output Energy

Stepan Yaramyshev ${ }^{1}$, Kurt Aulenbacher ${ }^{2,3}$, Winfried Barth ${ }^{1,2}$, Viktor Gettmann ${ }^{1,2}$, Manuel Heilmann ${ }^{\text {1,4, }}$, Sascha Mickat ${ }^{\text {1,2, Maksym Miski-Oglu 1,2 }}$
${ }^{1}$ GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
${ }^{2}$ Helmholtz Institute Mainz, Mainz, Germany
${ }^{3}$ IKP, Johannes Gutenberg-University Mainz, Germany
${ }^{4}$ IAP, Goethe-University Frankfurt am Main, Germany

Facility for Antiproton and Ion Research at Darmstadt

UNIversal Linear ACcelerator

UNILAC is foreseen as an injector for FAIR

Beam time availability is decreased for other programs:

- SuperHeavy Elements
- Material research
- Biophysics

Enin

To a question of matching...

HB 2016 discussion

an example from GSI UNILAC

To a question of matching / HB 2016 discussion

To a question of matching / HB 2016 discussion

RFQ

RF

Beam brilliance (current / emittance) improvement beam dynamics simulations
horizontal \& vertical - about factor of 2 longitudinal - about 60%

The same beam (4 $\mathrm{mA} \mathrm{Ta}^{4+}$) the same machine settings only four quadropoles changed

RFQ Particle transmission experimental data

Old settings $\approx 50 \%$
(L. Groening)

New settings $\approx 75 \%$
(S. Yaramyshev)

To a question of matching / HB 2016 discussions

High current uranium / argon beams

transmission

emittance

XX mm*mrad
$\approx 1 / 2 \mathrm{XX} \mathrm{mm} * \mathrm{mrad}$
$\approx 1 / 2 \mathrm{YY} \mathrm{mm*mrad}$
$\approx 2 / 3 \mathrm{ZZ} \mathrm{mm*mrad}$

Together with other measures lead to

- world record for uranium beam intensity
- reached beam brilliance required for FAIR

Winfried Barth, HB 2016, TUAM7Y11
High Current Uranium Beam Measurements at GSI-UNILAC for FAIR
W. Barth et al., Physical Review ST AB 18(4), 050102 (2015)

And now back to CW linac longitudinal matching ...

New SC CW Linac at GSI

> Heavy ion facility
> Compact machine Superconducting (SC) Continuous wave (CW) 10 times higher intensity on target Variable energy from 3.5 to $7.3 \mathrm{MeV} / \mathrm{u}$

New feature (requirements): acceleration of ions with mass to charge ratio from 3 to 6, even to higher energy

New SC CW Linac at GSI

New feature (requirement): acceleration of ions with mass to charge ratio A / Z from 3 to 6 , even to energy higher than $7.3 \mathrm{MeV} / \mathrm{u}$

New layout:

- 13 independently powered cavities instead 9 ones
- less number of gaps per cavity
- easier to fabricate
- more flexibility for output energy
- more complicate linac settings

Schematic layout of the CW Demonstrator at GSI

The commissioning of the CW-demonstrator consisting of two superconducting solenoids and the superconducting 15 -gap CH-cavity has already started in 2016

Two identical 8-gap CH cavities are already ordered; delivery to GSI is expected until summer 2017

New SC cavities

- cavity design is based on KONUS / EQUUS beam dynamics
- acceleration is not fully resonance

Longitudinal beam dynamics

KONUS / EQUUS beam dynamics allow for

- high acceleration gradient
- variable input energy
- variable output energy
- variable cavity voltage

Not fully resonance acceleration typically leads to a strong deformation of longitudinal beam emittance

Typical example of input and output particle distributions in longitudinal phase plane

Beam emittance representation

DYNAMION

beam dynamics simulations

100 macroparticles as an ellipse in longitudinal phase plane

Random input Twiss-parameters, central energy, central coordinate

Big number of such ellipses are simulated in one run

Analysis of output distribution is possible due to unique ID of particle

Typical example of input and output particle distributions in longitudinal phase plane

Analysis of output data

Series of points (Z, Z^{\prime}) could be approximated by an ellipse

$$
c Z^{2}+2 a Z Z^{\prime}+b Z^{\prime 2}=1
$$

Twiss-parameters α, β, γ could be obtained by means of least squares method

$$
a=\frac{\alpha}{\sqrt{b c-a^{2}}} \quad b=\frac{\beta}{\sqrt{b c-a^{2}}} \quad c=\frac{\gamma}{\sqrt{b c-a^{2}}}
$$

The parameter ε_{i} is enumerated for each particle of the output 100-particle ensemble:

$$
\varepsilon_{i}=\gamma Z^{2}+2 \alpha Z Z^{\prime}+\beta Z^{\prime 2}
$$

Mismatch factors

Three factors are calculated for each output 100-particle ensemble:

- emittance growth $\left(\mathrm{F}_{1}\right)$
- deformation of elliptical shape $\left(\mathrm{F}_{2}\right)$
- energy gain $\left(\mathrm{F}_{3}\right)$

$$
F_{1}=\frac{\varepsilon_{\max }}{\varepsilon_{\text {input }}} \quad F_{2}=\frac{\varepsilon_{\max }-\varepsilon_{\min }}{\varepsilon_{\text {input }}} \quad F_{3}=\frac{\beta_{\text {out }}-\beta_{\text {in }}}{\beta_{\text {in }}}
$$

where $\varepsilon_{\text {max }}$ and $\varepsilon_{\text {min }}$ are the maximum and minimum values of the series $\varepsilon_{i} ; \varepsilon_{\text {input }}$ is total unnorm. longitudinal beam emittance; $\quad \boldsymbol{\beta}_{\text {in }}$ and $\boldsymbol{\beta}_{\text {out }}$ are the input and output relative velocities, averaged on the 100-particle ensemble.

Optimization for lower emittance deformation

General mismatch parameter

$$
f_{g}=F_{1}^{p} \cdot F_{2}^{q} \cdot F_{3}^{-s}
$$

A general mismatch parameter with the weight coefficients $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{s}$ could be constructed and used in dependence of the required goal in between of two limits:

- the highest acceleration - the best beam quality

Well matched beam parameters

Particles are accelerated to a reasonable energy and the output distribution is close to an elliptical shape

The matched input beam characteristics are determined:

- Twiss-parameters
- energy of beam center
- coordinate of beam center (cavity rf phase)

Typical example of the matched input 100-particle
ensemble and the corresponding output

Conclusion and Outlook

Dedicated algorithm for the longitudinal beam matching for a chain of DTL cavities is developed.

A flexible constructed mismatch parameter allows for machine optimization for a wide range of the ions with different mass to charge ratio, as well as for the required output beam energy from 3.5 to $7.3 \mathrm{MeV} / \mathrm{u}$ and higher (for medium ions).

The method is foreseen to be implemented for the new HIM/GSI heavy ion SC CW linac, comprised by 13 independently powered multi-gap cavities, developed at IAP.

Community experience

The new heavy ion SC CW linac project, conducted by HIM and GSI, is fully in line with other modern type and high efficient CW linac projects, mainly for proton and light ion acceleration, which are under development at different leading accelerator centers worldwide.
... these proceedings:

Sergey Polozov et al.,	MOPL004	(MEPhI, Moscow)
Rudolf Tiede et al.,	WEAM1 Y01	(IAP, Frankfurt)
Dan Berkovits et al.,	TUAM1 Y01	(SARAF, Tel-Aviv)

