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Mysterious Simulation/Analytic Results 

 During HB2014 Workshop, Kornilov and Blaskiewicz 
reported mysterious simulation and analytical results 
for beam instabilities with space-charge force. 
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Beam Instabilities with Space-Charge 

 Many simulation results generally indicate that beam 
instability can be damped by a weak space-charge 
force, but the beam becomes unstable again when the 
space charge force is further increased.  

 If the damping of beam instabilities is caused by the 
betatron tune spread ( i.e., Landau damping) due to 
the non-linearity of the space-charge force,  

 A stronger space-charge force should be more 
effective in damping of beam instabilities. 

 Why do many simulation results show the contrary? 

 No definite answer to this question for the last ~20 
years. 
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Invitation by Alex 

 After the working session at HB2014, Alex has 
invited me and Mike to collaborate on study for 
effects of space-charge force on beam instabilities 
by modifying his famous two particle model for strong 
head-tail instabilities. 
 That was a fascinating idea. 

 We may be able to solve the mystery by using a simple 
model and mathematics for this complicated phenomenon. 

 We found later though that his proposed new two particle 
model did not work (a pity). 

 So, it turned out that the crux of the problem is to find a 
suitable new two particle model which is 

 A simple expansion of the original two particle model 

 Still analytically and exactly solvable.  
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Alex’s Original Two Particle Model 

 Let us first review the premise and treatment of 
Alex’s original two particle model. 
 Two macro-particles executing synchrotron and betatron 

oscillations.  

 Their synchrotron oscillations have equal amplitude, but 
opposite phases. 
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Transfer Matrix 
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Dimensionless Wake Field Strength Parameter  

 Alex’s two particle model is a peculiar system that  

 The oscillation of y2 is a pure harmonic oscillator . 

 Thus, the amplitude of y2 oscillation is a constant of 
motion.  

 The motion of y1 cannot be diagonalized, but its evolution 
can be found using the constant of motion of y2:  
 



y 1
y 2 𝑠=𝑐𝑇𝑠/2

= 𝑒−𝑖𝜔𝛽𝑇𝑠/2 1 𝑖Υ
0 1

y 1
y 2 𝑠=0

for 0 <
s

c
< 𝑇𝑠/2 

 

 Here                      y 2 = 𝑦2 + 𝑖
𝑐

𝜔𝛽
𝑦2

′ : amplitude with phase advance 

Υ =  
𝜋𝑁𝑟0𝑊0𝑐

2

4𝛾𝐶𝜔𝛽𝜔𝑠
     



Full Transfer Matrix 

 The transfer matrix during the second half of the 
synchrotron oscillation period, 𝑇𝑠/2 <

s

c
< 𝑇𝑠, is 

obtained by exchanging the indices 1 and 2. 
 

 Total Matrix 

y 1
y 2 𝑠=𝑐𝑇𝑠

= 𝑒−𝑖𝜔𝛽𝑇𝑠 1 0
𝑖Υ 1

1 𝑖Υ
0 1

y 1
y 2 𝑠=0

=

𝑒−𝑖𝜔𝛽𝑇𝑠 1 𝑖Υ
𝑖Υ 1 − Υ2

y 1
y 2 𝑠=0

. 

 

 Eigenvalues  for the total matrix 
 
1 𝑖Υ
𝑖Υ 1 − Υ2 =  𝜆

1 0
0 1
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Analysis of Eigenvalues 

 Description of eigenvalues in Alex’s book is geometrical 
(The eigenvalues are expressed by angles). 

 

 

 

 

 

 

 

 

 Here, we try an algebraic and more intuitional expression. 
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Eigenvalues and Growth Rate 

 The two eigenvalues are 

 λ =
 1 −

Υ2

2
±

Υ2

2
∙

Υ2

2
− 2        𝑖𝑓 Υ2 ≥ 4

1 −
Υ2

2
± 𝑖

Υ2

2
∙ 2 −

Υ2

2
      𝑖𝑓 Υ2 ≤ 4

 

 At the threshold value of Υ2 = 4, the eigenvalue 
𝜆 becomes exactly minus one (𝜆 = −1) or   

 

 𝜆 = 𝑒±𝑖𝜋 
 

 If Υ2 ≥ 4, one of the solutions is unstable. 

 𝜆 = 1 −
Υ2

2
−

Υ2

2
∙

Υ2

2
− 2 ≤ −1                                  
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Instability Mechanism 
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2
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2
+
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2
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Transverse Mode-Coupling Instability 

 It implies that the strong head-tail instability occurs by 
the mode coupling between the two solutions when the 
difference of their phase advances over one synchrotron 
period becomes exactly 2. 
 

 The growth rate g, when Υ2 ≥ 4, is obtained by equating   

 𝜆 = 𝑒𝑔𝑇𝑠 =
Υ2

2
∙

Υ2

2
− 2 +

Υ2

2
− 1.  

 

 The growth factor 𝑔 × 𝑇𝑠 over one synchrotron oscillation: 

 𝑔 × 𝑇𝑠 = log
Υ2

2
∙

Υ2

2
− 2 +

Υ2

2
− 1  

 

 It is an universal function only of the dimensionless wake field 
parameter Υ. 

 

 

2016/7/5 Chin, Chao and Blaskiewicz 12 



New Two Particle Model with Space Charge 

 Two approximations: 
 Linear Model 

 The space-charge force is linear in the relative distance 
between the two particles. 

 Continuous Interaction Model 

 The two particles interact continuously and coherently 
with a space charge force in the transverse plane. 
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y1
′′ + 
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𝑐

2

𝑦1 = 𝐾 𝑦1 − 𝑦2 + 𝑊𝑦2 

y2
′′ + 

𝜔𝛽

𝑐

2

𝑦2 =  𝐾 𝑦2 − 𝑦1  

For 0 <
s

c
< 𝑇𝑠/2 

𝑊 =
𝑁𝑟0𝑊0

2𝛾𝐶
  



Mathematical Procedure 

 Find new coordinates (eigenvectors) to diagonalize 
the system to two independent harmonic oscillators.  

 Find constants of motion to describe those harmonic 
oscillators (they are often the amplitude of 
oscillations). 

 Describe the system using the original coordinates 
and the constant of motions that we have just found. 

 Calculate a transfer matrix for the amplitude of the 
particle motion (with the phase advance), not for the 
particle coordinates and its momentum. 
 This way, the matrix becomes 2x2, not 4x4. 

 Find eigenvalues of a matrix for the full synchrotron 
oscillation period. 
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Weak Space-Charge Case (W≥K) 

 By adding the space-charge term, the system has no 
trivial harmonic oscillator solution. 
 We can now apply the general eigenvalue technique. 

 For given Υ (the dimensionless wake field parameter) 
and ∆ν𝑠𝑐/𝜈𝑠 (the dimensionless space-charge parameter), 

 r =
𝐾

𝑊
=

𝜋

2Υ

∆ν𝑠𝑐

𝜈𝑠
1 
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y = 2 𝑟(1 − 𝑟) 

tanh2
Υ

2
y ≤ y2 

Γ2

2
= 2 ∙

1−𝑦2

𝑦2 ∙
tanh2 Υ

2
y

1−tanh2 Υ

2
y

.  

Yes No 
Unstable Stable 

Growth rate: 𝑔 =
1

𝑇𝑠
log

Γ2

2
∙

Γ2

2
− 2 +

Γ2

2
− 1  

Γ behaves like Υ 



Weak Space-Charge Case (W≥K) 
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The stability 
diagram for the 
weak space-charge 
case (r=K/W≤1).  
 
Unstable regions 
are shown shaded. 

y1
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𝑐

2
−

𝑊

2
𝑦2 = −

𝑊

2
𝑦1  

r=1/2 

Absolutely stable  
regardless of W 

The white region between r=0 and 1 and above Υ = 2 is a passband 
created by decoupling of the modes by the space-charge force. 



Instability Mechanism 
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Strong Space-Charge Case (K≥W) 
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The stability diagram 
for the strong space-
charge case 
(r=K/W≥1).  
 
The stability diagram 
for the weak space-
charge case 
(r=K/W≤1) is also 
plotted for completion.  
 
Unstable regions are 
shown shaded. 

The mode-coupling condition is satisfied when 
∆ν𝑠𝑐 takes values around an odd integer times 𝜈𝑠.  
Many stopbands appear. 

-
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Contour Plots for Growth Rate 
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Flat contour plot for the growth factor g × T𝑠 

as a function of Υ and 
∆ν𝑠𝑐

𝜈𝑠
. 

3-dimensional contour plot for the growth 

factor g × T𝑠 as a function of Υ and 
∆ν𝑠𝑐

𝜈𝑠
. 

These figures are all universal ! 



Mode Coupling/Decoupling 

 The damping of strong head-tail instabilities with a 
weak space-charge force is caused by decoupling of 
the modes due to additional tune shifts by the space-
charge force, not the Landau damping due to the non-
linearity of the space-charge force.  

 As the space-charge force is increased, tune shifts 
by the space-charge force conversely restore the 
mode-coupling. But, a further increase of the space-
charge force decuples the modes again.  

 This mode coupling/decoupling behavior creates 
stopband structures as a function of the space-
charge tune shift parameter and Υ.  
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Two Particles Play Many Modes 

 In the present two particle model, there are only two 
modes in principle, but they play many different modes 
as if in a more general mode expansion method. 

 Very roughly speaking, it appears that the one mode 
plays always the m=0 mode, while the other mode plays 
negative odd integer modes (m=-1,-3,-5,…) depending on 
the strength of the space-charge force. 

 But, the two particles can have only one node at most in 
the oscillation envelop, while higher–order headtail 
modes would have multiple nodes. 

 In this sense, the present model may not depict an 
accurate picture of mode coupling between higher –
order headtail modes at large space-charge tune shift. 
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Growth Rate as a Function of  
Space-Charge Tune Shift 

 Υ =4 case. 

 

 

 

 

 

 

 
 

 It shows that the space-charge force loses its damping effect 
when it is too strong.  

 It qualitatively reproduces typical behaviors shown in 
theoretical and simulation results. 
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Two Cases of Absolutely Stable Coupled Motions 
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y1
′′ + 

𝜔𝛽

𝑐

2
−

𝑊

2
𝑦1 =

𝑊

2
𝑦2 

y2
′′ + 

𝜔𝛽

𝑐

2
−

𝑊

2
𝑦2 = −

𝑊

2
𝑦1  

y1
′′ + 

𝜔𝛽

𝑐

2

𝑦1 = 𝐾 𝑦1 − 𝑦2  

y2
′′ + 

𝜔𝛽

𝑐

2

𝑦2 =  𝐾 𝑦2 − 𝑦1  

As the space-charge force 
increases, Eqs. of motion 
approach to those for two 
pendulums connected with 
a spring. 

Another absolutely stable 
motions. 



Why is the pure space-charge 
oscillation stable? 

 Because there is no energy transfer or flow into the 
transverse oscillation externally or from the 
longitudinal motion of a beam. 
 In case of transverse head-tail beam instability, even if only 

transverse mode is excited in a structure, it has a longitudinal 
impedance and the head-tail mode gains energy from the 
longitudinal energy loss of the beam. 

 Just like the two pendulum system connected with a 
spring, the space-charge force itself cannot excite 
beam instabilities: 
 It needs wake fields. 

 If the wake fields are sufficiently weaker than the space-
charge force, the beam will stay stable. 
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Summary 

 The present two particle model has no tune spread 
effect, since the space-charge force is linearized in 
the transverse position. 
 

 However, the damping of beam instabilities with a 
weak space-charge force can be well explained by 
pure coherent kicks of the space-charge force: 
 They partially neutralize the coherent wake field kicks and 

decouple the modes. 
 

 The damping by linear coherent kicks is unusual ? 
 No. To damp beam instabilities externally, we often use 

 Non-linear magnets such as octupoles for Landau damping 
by an incoherent tune spread. 

 Feedback system for linear coherent kicks to a beam. 
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Conclusions and Preview of Works to Come 

 The purpose of the present simple model is, not to 
explain every effect of space-charge force on beam 
instabilities with numerical precision, but to suggest a 
simple picture of some of the essence of the physics 
of this complicated subject.  

 We hope that it will provide a good starting point for 
young scientists to join this effort with their own 
models or improved versions of the present model so 
that the model becomes more physically accurate.  

 We are currently working on 
 Effects of chromaticity on head-tail instabilities using the 

two particle mode and the Vlasov approach. 

 Inclusion of all three effects: wake fields, the chromaticity 
and the space-charge force. 
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“The Geography of Thought” by R. Nisbett 
How Asians and Westerners Think Differently… and Why 

 According to this book,  
 Westerners think that the World is simple and steady. 

 It is ruled by simple laws of nature and can be described 
by simple models. 

 They value principles. 

 Asians think that the World is complicated and rapidly 
changing. 

 It is too complicated even to describe. 

 There is no law of nature, since such a law is also changing 
all the time. 

 They value practicality. 

 That is why Westerners succeeded in creating and 
developing science called physics, while Asians failed. 
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