

Many thanks to the many LHC colleagues!

a second with the second s

CERN Mevrin

ATLAS

CMS Measurements and interpretation of transverse beam instabilities in the CERN Large Hadron Collider (LHC) and extrapolations to HL-LHC

LHC 27 km

CERN Préves

Elias Métral

BE/ABP-HSC (Collective/Coherent Effects)

Elias.Metral@cern.ch Tel.: 00 41 75 411 4809 http://emetral.web.cern.ch/emetral/

Introduction

Introduction

• Observations, actions taken and lessons learned

Introduction

- Observations, actions taken and lessons learned
 - Run 1 (2010-2012)

Introduction

- Observations, actions taken and lessons learned
 - Run 1 (2010-2012)
 - **2015**

Introduction

- Observations, actions taken and lessons learned
 - Run 1 (2010-2012)
 - **2015**
 - **2016**

Introduction

- Observations, actions taken and lessons learned
 - Run 1 (2010-2012)
 - **2015**
 - **2016**
- Future: LHC and HL-LHC

Introduction

- Observations, actions taken and lessons learned
 - Run 1 (2010-2012)
 - **2015**
 - **2016**
- Future: LHC and HL-LHC
- Conclusion

INTRODUCTION

INTRODUCTION

 Transverse instabilities are a concern based on the experience of the LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)

INTRODUCTION

 Transverse instabilities are a concern based on the experience of the LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)

 Measurements of transverse instabilities in the LHC started on Saturday 15/05/2010 during the 1st ramp with an ~ nominal bunch (with neither transverse damper nor Landau octupoles)

- Measurements of transverse instabilities in the LHC started on Saturday 15/05/2010 during the 1st ramp with an ~ nominal bunch (with neither transverse damper nor Landau octupoles)
 - Instability at ~ 2 TeV for both beams

- Measurements of transverse instabilities in the LHC started on Saturday 15/05/2010 during the 1st ramp with an ~ nominal bunch (with neither transverse damper nor Landau octupoles)
 - Instability at ~ 2 TeV for both beams
 - "Christmas tree" in May!

1st TCBI rise-time studies (for mode 0) with 48 bunches (12 + 36)

- 1st TCBI rise-time studies (for mode 0) with 48 bunches (12 + 36)
 - Good agreement at 450 GeV

- 1st TCBI rise-time studies (for mode 0) with 48 bunches (12 + 36)
 - Good agreement at 450 GeV

 ~ 2-3 faster rise-times observed at 3.5 TeV (but uncertainty on chromaticities)

- 1st TCBI rise-time studies (for mode 0) with 48 bunches (12 + 36)
 - Good agreement at 450 GeV

- ~ 2-3 faster rise-times observed at 3.5 TeV (but uncertainty on chromaticities)
- Landau octupole current for stability at 3.5 TeV within factor ~ 2 with predictions (even less than predicted)

 Several other measurements of collective effects were also performed in good agreement with predictions

 Several other measurements of collective effects were also performed in good agreement with predictions

=> Everything started very well (~ as predicted)!

 Several other measurements of collective effects were also performed in good agreement with predictions

=> Everything started very well (~ as predicted)!

 ...Things started to become more involved when we tried to push the performance of the LHC in 2011, and in particular in 2012 (year of discovery of the "Higgs-like" boson)...

Beam energy	E	7 TeV (4 in 2012)
Number of particles per bunch	N _b	1.15 10¹¹ (~ 1.6 in 2012)
Number of bunches per beam	М	2808 (1380 in 2012)
Bunch spacing	Δt	25 ns (50 in 2012)
Norm. rms. trans. emittance	3	3.75 μm (~ 2.2 in 2012)
Revolution frequency	f ₀	11245 Hz
Rms bunch length	σ _z	7.5 cm (~ 10 in 2012)
Bunch charge	Q	18.4 nC (25.6 in 2012)
Total beam current	I _b	0.58 A (~ 0.4 in 2012)

Beam energy	E	7 TeV (4 in 2012)
Number of particles per bunch	N _b	1.15 10 ¹¹ (~ 1.6 in 2012)
Number of bunches per beam	М	2808 (1380 in 2012)
Bunch spacing	Δt	25 ns (50 in 2012)
Norm. rms. trans. emittance	3	3.75 μm (~ 2.2 in 2012)
Revolution frequency	f ₀	11245 Hz
Rms bunch length	σz	7.5 cm (~ 10 in 2012)
Bunch charge	Q	18.4 nC (25.6 in 2012)
Total beam current	I _b	0.58 A (~ 0.4 in 2012)

=> Bunch brightness reached: ~ $(1.6 / 1.15) \times (3.75 / 2.2) \sim 2.4$ times larger than nominal (at 4 TeV)!

Beam energy	E	7 TeV (4 in 2012)
Number of particles per bunch	N _b	1.15 10 ¹¹ (~ 1.6 in 2012)
Number of bunches per beam	М	2808 (1380 in 2012)
Bunch spacing	Δt	25 ns (50 in 2012)
Norm. rms. trans. emittance	3	3.75 μm (~ 2.2 in 2012)
Revolution frequency	f ₀	11245 Hz
Rms bunch length	σz	7.5 cm (~ 10 in 2012)
Bunch charge	Q	18.4 nC (25.6 in 2012)
Total beam current	I _b	0.58 A (~ 0.4 in 2012)

=> Bunch brightness reached: ~ $(1.6 / 1.15) \times (3.75 / 2.2) \sim 2.4$ times larger than nominal (at 4 TeV)!

=> Record peak luminosity: 0.77 × 10³⁴ cm⁻²s⁻¹

=> 3 types (in fact 2 after careful analysis) of instabilities were observed

• 1) In collision: "snowflakes"
• 1) In collision: "snowflakes"

Courtesy of X. Buffat

1) In collision: "snowflakes"

Courtesy of X. Buffat

1) In collision: "snowflakes"

Courtesy of X. Buffat

Always in H only (both beams)

1) In collision: "snowflakes"

Courtesy of X. Buffat

- Always in H only (both beams)
- Concerned initially only IP8 private bunches => Disappeared when filling scheme was changed

1) In collision: "snowflakes"

Courtesy of X. Buffat

- Always in H only (both beams)
- Concerned initially only IP8 private bunches => Disappeared when filling scheme was changed
- Happens on selected bunches with insufficient tune spread (and thus Landau damping) due to no BBHO collisions (or offsets)

• 2) During the collapsing process (putting the beams into collision)

• 2) During the collapsing process (putting the beams into collision)

Courtesy of G. Arduini

• 2) During the collapsing process (putting the beams into collision)

• Example of instability at ~ 2.1 σ in IP1 and ~ 1.2 σ in IP5 (estimated from luminosities at the moment of the dump)

• 2) During the collapsing process (putting the beams into collision)

- Example of instability at ~ 2.1 σ in IP1 and ~ 1.2 σ in IP5 (estimated from luminosities at the moment of the dump)
- Also in H

2) During the collapsing process (putting the beams into collision)

- Example of instability at ~ 2.1 σ in IP1 and ~ 1.2 σ in IP5 (estimated from luminosities at the moment of the dump)
- Also in H
- Happened only once or twice during the intensity ramp-up => Was never observed later in operational conditions

 3) During or at the end of the squeeze process => End-Of-Squeeze Instability (EOSI)

3) During or at the end of the squeeze process => End-Of-Squeeze Instability (EOSI)

3) During or at the end of the squeeze process => End-Of-Squeeze Instability (EOSI)

Also in H

• Actions taken

- Actions taken
 - Initial recommendations

- Initial recommendations
 - Chromaticities: as low as possible (1-2 units)

- Initial recommendations
 - Chromaticities: as low as possible (1-2 units)
 - Transverse damper gain: as low as possible

Actions taken

- Initial recommendations
 - Chromaticities: as low as possible (1-2 units)

Focusing octupoles

- Transverse damper gain: as low as possible
- Landau octupoles: as low as possible & LOF < 0 (better for 1-beam)</p>

- Initial recommendations
 - Chromaticities: as low as possible (1-2 units)
 - Transverse damper gain: as low as possible
 - Landau octupoles: as low as possible & LOF < 0 (better for 1-beam)</p>
- With issues discussed before, several actions were taken to continue and push the performance

- Initial recommendations
 - Chromaticities: as low as possible (1-2 units)
 - Transverse damper gain: as low as possible
 - Landau octupoles: as low as possible & LOF < 0 (better for 1-beam)</p>
- With issues discussed before, several actions were taken to continue and push the performance
 - Proposed to change the sign of the Landau octupoles such that the tune spreads from BBLR and octupoles do not fight against each other (S. Fartoukh)

- Initial recommendations
 - Chromaticities: as low as possible (1-2 units)
 - Transverse damper gain: as low as possible
 - Landau octupoles: as low as possible & LOF < 0 (better for 1-beam)</p>
- With issues discussed before, several actions were taken to continue and push the performance
 - Proposed to change the sign of the Landau octupoles such that the tune spreads from BBLR and octupoles do not fight against each other (S. Fartoukh)
 - New values for the gain of the transverse damper, chromaticities and Landau octupole current suggested after a new analytical approach (NHTVS from A. Burov)

Actions taken

- Initial recommendations
 - Chromaticities: as low as possible (1-2 units)
 - Transverse damper gain: as low as possible
 - Landau octupoles: as low as possible & LOF < 0 (better for 1-beam)</p>
- With issues discussed before, several actions were taken to continue and push the performance
 - Proposed to change the sign of the Landau octupoles such that the tune spreads from BBLR and octupoles do not fight against each other (S. Fartoukh)
 - New values for the gain of the transverse damper, chromaticities and Landau octupole current suggested after a new analytical approach (NHTVS from A. Burov)

=> Finally used high chromaticities (~ 15) + ~ maximum octupole current (max = + 550 A) + ~ maximum damper gain (50-turn damping)...

• Lessons learned

Lessons learned

 Seems that main reason for which situation improved was the increase of chromaticity (which was not well corrected)

Lessons learned

- Seems that main reason for which situation improved was the increase of chromaticity (which was not well corrected)
 - Running at high chromaticity prevented to reach negative values

Lessons learned

- Seems that main reason for which situation improved was the increase of chromaticity (which was not well corrected)
 - Running at high chromaticity prevented to reach negative values
 - Transverse damper was not fully bunch-by-bunch initially => More octupole current required for low chromaticities

Lessons learned

- Seems that main reason for which situation improved was the increase of chromaticity (which was not well corrected)
 - Running at high chromaticity prevented to reach negative values
 - Transverse damper was not fully bunch-by-bunch initially => More octupole current required for low chromaticities

Fully bunch-by-bunch (flat gain)

Courtesy of A. Burov

Lessons learned

Change in octupole sign was finally found not to be helpful from both
 i) measurements

Lessons learned

Change in octupole sign was finally found not to be helpful from both
 i) measurements

Lessons learned

Change in octupole sign was finally found not to be helpful from both
 i) measurements

Courtesy of T. Pieloni

=> EOSI could not be cured / understood yet

Lessons learned

Change in octupole sign was finally found not to be helpful from both
 i) measurements

Courtesy of T. Pieloni

=> EOSI could not be cured / understood yet
=> Still potential worry for the future

Lessons learned

and ii) simulations (see stability diagram below)

Lessons learned

and ii) simulations (see stability diagram below)

Courtesy of X. Buffat

Lessons learned

and ii) simulations (see stability diagram below)

Courtesy of X. Buffat

However, a positive sign is predicted to be much better for the case of the Nominal configurations => This is why the positive sign of the octupoles is used during Run 2

Lessons learned

Main lesson learnt for the future was to better study the interplays between (all) the different mechanisms in a machine like the LHC

Lessons learned

- Main lesson learnt for the future was to better study the interplays between (all) the different mechanisms in a machine like the LHC
- A lot of work has been done over the last few years with in particular
Lessons learned

- Main lesson learnt for the future was to better study the interplays between (all) the different mechanisms in a machine like the LHC
- A lot of work has been done over the last few years with in particular
 - Proposed mechanism of the 3-beam instability (A. Burov)

Lessons learned

- Main lesson learnt for the future was to better study the interplays between (all) the different mechanisms in a machine like the LHC
- A lot of work has been done over the last few years with in particular
 - Proposed mechanism of the 3-beam instability (A. Burov)
 - Detailed analysis of the transverse mode coupling instability of colliding bunches (S. White)

Lessons learned

- Main lesson learnt for the future was to better study the interplays between (all) the different mechanisms in a machine like the LHC
- A lot of work has been done over the last few years with in particular
 - Proposed mechanism of the 3-beam instability (A. Burov)
 - Detailed analysis of the transverse mode coupling instability of colliding bunches (S. White)
 - Proposed mechanism of a modification of the stability diagram by some beam-induced noise (X. Buffat)

Courtesy of X. Buffat

Lessons learned

- Main lesson learnt for the future was to better study the interplays between (all) the different mechanisms in a machine like the LHC
- A lot of work has been done over the last few years with in particular
 - Proposed mechanism of the 3-beam instability (A. Burov)
 - Detailed analysis of the transverse mode coupling instability of colliding bunches (S. White)
 - Proposed mechanism of a modification of the stability diagram by some beam-induced noise (X. Buffat) => To be able to learn more on stability diagrams from beam-based measurements, Beam Transfer Measurements (BTF) should be performed

Courtesy of X. Buffat

Impedance-induced transverse beam instability: Single bunch

Impedance-induced transverse beam instability: Single bunch

Courtesy of L.R. Carver

Impedance-induced transverse beam instability: Single bunch

Courtesy of L.R. Carver

Destabilising effect of e-cloud at 6.5 TeV: 72 bunches

Destabilising effect of e-cloud at 6.5 TeV: 72 bunches

Courtesy of L.R. Carver

Destabilising effect of e-cloud at 6.5 TeV: 72 bunches

Courtesy of L.R. Carver

Destabilising effect of e-cloud at 6.5 TeV: 72 bunches

Destabilising effect of linear coupling at injection

- Destabilising effect of linear coupling at injection
 - When the injection working point was optimized (for e-cloud) => (0.275,0.295) instead of (0.28,0.31)

- Destabilising effect of linear coupling at injection
 - When the injection working point was optimized (for e-cloud) => (0.275,0.295) instead of (0.28,0.31)
 - When Laslett tune shifts not corrected during injection

Destabilising effect of linear coupling at injection

- When the injection working point was optimized (for e-cloud) => (0.275,0.295) instead of (0.28,0.31)
- When Laslett tune shifts not corrected during injection

Destabilising effect of linear coupling at injection

- When the injection working point was optimized (for e-cloud) => (0.275,0.295) instead of (0.28,0.31)
- When Laslett tune shifts not corrected during injection

=> Believed to be due to linear coupling (see later)

• 1ST BTF measurements in the LHC and 1st stability diagram measured

• 1ST BTF measurements in the LHC and 1st stability diagram measured

Courtesy of C. Tambasco

◆ 1ST BTF measurements in the LHC and 1st stability diagram measured

Courtesy of C. Tambasco

Closer look recently: why do we see a loop in the BTF and what are its characteristics?

Courtesy of C. Tambasco

Closer look recently: why do we see a loop in the BTF and what are its characteristics?

Closer look recently: why do we see a loop in the BTF and what are its characteristics?

• Mathematical description of the BTF of a loop

Closer look recently: why do we see a loop in the BTF and what are its characteristics?

Closer look recently: why do we see a loop in the BTF and what are its characteristics?

• Actions taken

- Actions taken
 - High chromaticities (~ 15) + ~ maximum octupole current (550 A)

- High chromaticities (~ 15) + ~ maximum octupole current (550 A)
- Detailed simulation campaign started to study effects of e⁻ from arc dipoles and quadrupoles but also from interaction regions

- High chromaticities (~ 15) + ~ maximum octupole current (550 A)
- Detailed simulation campaign started to study effects of e⁻ from arc dipoles and quadrupoles but also from interaction regions
- With new injection working point, recommendation to correct both Laslett tune shifts and closest tune approach (|C⁻|), to avoid possible instabilities induced by linear coupling

- High chromaticities (~ 15) + ~ maximum octupole current (550 A)
- Detailed simulation campaign started to study effects of e⁻ from arc dipoles and quadrupoles but also from interaction regions
- With new injection working point, recommendation to correct both Laslett tune shifts and closest tune approach (|C⁻|), to avoid possible instabilities induced by linear coupling
- Detailed analysis of effect of linear coupling on transverse beam instabilities also started with a single bunch at high energy

- High chromaticities (~ 15) + ~ maximum octupole current (550 A)
- Detailed simulation campaign started to study effects of e⁻ from arc dipoles and quadrupoles but also from interaction regions
- With new injection working point, recommendation to correct both Laslett tune shifts and closest tune approach (|C⁻|), to avoid possible instabilities induced by linear coupling
- Detailed analysis of effect of linear coupling on transverse beam instabilities also started with a single bunch at high energy
- BTF measurements started to be benchmarked

Lessons learned

Lessons learned

While it is still not completely clear why such high values were needed in 2012, it was clear in 2015 that an important e-cloud was still present at high energy and that it could drive the beam unstable

- Lessons learned
 - While it is still not completely clear why such high values were needed in 2012, it was clear in 2015 that an important e-cloud was still present at high energy and that it could drive the beam unstable
 - Furthermore, linear coupling should be studied in more detail during all the LHC cycle

 Destabilising effect of linear coupling at 6.5 TeV => Linear coupling can be beneficial or detrimental
- Destabilising effect of linear coupling at 6.5 TeV => Linear coupling can be beneficial or detrimental
 - Why could linear coupling be a problem for beam stability?

- Destabilising effect of linear coupling at 6.5 TeV => Linear coupling can be beneficial or detrimental
 - Why could linear coupling be a problem for beam stability?
 - => Because the coherent tunes are shifted by linear coupling differently compared to the incoherent tunes (providing the Landau damping) due to the nonlinear fields (from octupoles to create the tune spread). Therefore in some cases a too strong coupling can be detrimental, leading to instabilities due to a loss of transverse Landau damping

Proceedings of EPAC 2002, Paris, France

DESTABILISING EFFECT OF LINEAR COUPLING IN THE HERA PROTON RING

E. Métral, CERN, Geneva, Switzerland G. Hoffstaetter, F. Willeke, DESY, Hamburg, Germany

Abstract

Since the first start-up of HERA in 1992, a transverse coherent instability has appeared from time to time at the beginning of the acceleration ramp. In this process, the emittance is blown up and the beam is partially or completely lost. Although the instability was found to be of the head-tail type, and the chromaticity and linear coupling between the transverse planes was recognized as essential for the instability to occur, the driving mechanism was never clarified. An explanation of the phenomenon is presented in this paper using the coupled Landau damping theory. It is predicted that a too strong coupling can be detrimental since it may shift the coherent tune outside the incoherent spectrum and thus prevent Landau damping. Due to these features, the name "coupled head-tail instability" is suggested for this instability in the HERA proton ring.

Proceedings of EPAC 2002, Paris, France

DESTABILISING EFFECT OF LINEAR COUPLING IN THE HERA PROTON RING

E. Métral, CERN, Geneva, Switzerland G. Hoffstaetter, F. Willeke, DESY, Hamburg, Germany

Abstract

Since the first start-up of HERA in 1992, a transverse coherent instability has appeared from time to time at the beginning of the acceleration ramp. In this process, the emittance is blown up and the beam is partially or completely lost. Although the instability was found to be of the head-tail type, and the chromaticity and linear coupling between the transverse planes was recognized as essential for the instability to occur, the driving mechanism was never clarified. An explanation of the phenomenon is presented in this paper using the coupled Landau damping theory. It is predicted that a too strong coupling can be detrimental since it may shift the coherent tune outside the incoherent spectrum and thus prevent Landau damping. Due to these features, the name "coupled head-tail instability" is suggested for this instability in the HERA proton ring.

Simple model used (externally given elliptical spectrum...) => Detailed simulation study currently being performed for the LHC by L.R. Carver (see after)

pyHEADTAIL simulations with an octupole as detuner

Physical mechanism => Simple model?

Physical mechanism => Simple model?

$$Q_u = Q_x - \frac{\left|C^{-}\right|}{2}\tan\alpha$$

$$Q_v = Q_y + \frac{|C^-|}{2}\tan\alpha$$

$$\Delta = Q_y + l - Q_x = q_y - q_x$$
$$= Q_{sep}$$

$$\tan(2\alpha) = \frac{\left|C^{-}\right|}{\Delta}$$

 Similar (but much smaller) behaviour seen

- Similar (but much smaller) behaviour seen
- Another ingredient is needed => Amplitude-dependent C⁻
 - Example found empirically:

$$\left| C^{-} \right| \times \left[1 + 0.15 \left(J_{x} - J_{y} \right) \right]$$

- Similar (but much smaller) behaviour seen
- Another ingredient is needed
 > Amplitude-dependent C⁻
 - Example found empirically:

$$\left| C^{-} \right| \times \left[1 + 0.15 \left(J_x - J_y \right) \right]$$

LOF < 0

$$\left|C^{-}\right| \times \left[1 \bigcirc 0.15 \left(J_{x} - J_{y}\right)\right]$$

See also R. Tomas et al., "Amplitude dependent closest tune approach" (submitted to PRAB) => However, the amplitudedependent C⁻ discussed before is not the same as the one in the paper and has been deduced empirically => To be continued... Dedicated instability measurements in the LHC on 16/04/2016

- Dedicated instability measurements in the LHC on 16/04/2016
 - 1) During the betatron squeeze

- Dedicated instability measurements in the LHC on 16/04/2016
 - 1) During the betatron squeeze
 - 2) At top energy (before the betatron squeeze)

2016 Transverse damper 1) During the betatron squeeze: ADT on, Q' ~ 9 and LOF = + 285 A • Timeseries Chart between 2016-04-16 00:20:00.000 and 2016-04-16 00:40:00.000 (LOCAL TIME) Focusing octupoles → HX:BETASTAR IP1 → LHC.BOFSU:TUNE TRIM B2 H → LHC.BOFSU:TUNE TRIM B2 V → LHC.BQBBQ.CONTINUOUS HS.B2:COUPLING ABS LHC.BQBBQ.CONTINUOUS_HS.B2:EIGEN_AMPL_1 5 -0.003 -0.0015 0.015 🖀 2 0.0025 250 H (F _P1(dm) 0.002 1d110 0.0015 TRIM N ä 0.0005 HX:BETASTAR 0.001 LHC.BOFSU:TUN LHC.BOFSU:TUN LHC.BQBBQ.CONTINUOUS 0.0005 1500.005 -0.0005 0.0005 100 0.001 -0.001 0.0015 Ξ 00:22 00:26 00:28 00:30 00:32 00:34 00:36 00:38 00:24 LOCAL_TIME

2016 Transverse damper 1) During the betatron squeeze: ADT on, Q' ~ 9 and LOF = + 285 A ۲ Timeseries Chart between 2016-04-16 00:20:00.000 and 2016-04-16 00:40:00.000 (LOCAL TIME) Focusing octupoles ↔ HX:BETASTAR IP1 → LHC.BOFSU:TUNE TRIM B2 H → LHC.BOFSU:TUNE TRIM B2 V → LHC.BQBBQ.CONTINUOUS HS.B2:COUPLING ABS LHC.BQBBQ.CONTINUOUS_HS.B2:EIGEN_AMPL_1 -0.003 0.0015 BS 0.015 0.0025 250 [P1 (dm) 0.002 Ĕ 0.0015 2 0.0005 HX:BETASTAR 0.001 HC.BOFSU:TUN SU:TUN LHC.BQBBQ.CONTINUOUS 0.0005 HC.BOF -0.0005 0.0005 100 0.001 -0.001 0.0015 00:22 00:24 00:26 00:28 00:30 00:32 00:34 00:36 00:38 LOCAL_TIME

♦ Bump of |C⁻| ~ 0.008

♦ Bump of |C⁻| ~ 0.008

♦ Q₁/Q₂ kept at 0.31/0.32 (tune feedback) => Q_x ~ 0.312 and Q_y ~ 0.318 => Q_y - Q_x ~ 0.006 (i.e. tune feedback is amplifying the coupling effect!)

♦ Bump of |C⁻| ~ 0.008

- ◇ Q₁/Q₂ kept at 0.31/0.32 (tune feedback) => Q_x ~ 0.312 and Q_y ~ 0.318 => Q_y Q_x ~ 0.006 (i.e. tune feedback is amplifying the coupling effect!)
- Instability observed with LOF = + 285 A, i.e. ~ 4 times higher octupole current than uncoupled threshold
• 2) At top energy (before the betatron squeeze)

0.4

0.2

This gives a factor 310 / 71 = 4.4 increase in Landau octupole current compared to the uncoupled case

Courtesy of L.R. Carver

 Signs of e-cloud (?) instability in stable beam with batches of 72 bunches for Q' ~ 15

- Signs of e-cloud (?) instability in stable beam with batches of 72 bunches for Q' ~ 15
 - Only vertical (B1&B2)

- Signs of e-cloud (?) instability in stable beam with batches of 72 bunches for Q' ~ 15
 - Only vertical (B1&B2)
 - At the end of trains of 72 bunches

- Signs of e-cloud (?) instability in stable beam with batches of 72 bunches for Q' ~ 15
 - Only vertical (B1&B2)
 - At the end of trains of 72 bunches
 - Emittance BU by a factor ~ 2

- Signs of e-cloud (?) instability in stable beam with batches of 72 bunches for Q' ~ 15
 - Only vertical (B1&B2)
 - At the end of trains of 72 bunches
 - Emittance BU by a factor ~ 2

- Signs of e-cloud (?) instability in stable beam with batches of 72 bunches for Q' ~ 15
 - Only vertical (B1&B2)
 - At the end of trains of 72 bunches
 - Emittance BU by a factor ~ 2

=> Was cured by increasing the vertical chromaticity (+7) in stable beam (to ~ 22)!

Courtesy of X. Buffat

Possible mechanism? (G. ladarola and G. Rumolo)

 Since few days we have been injecting batches of 2 × 48 bunches from the SPS instead of 1 batch of 72 bunches

- Since few days we have been injecting batches of 2 × 48 bunches from the SPS instead of 1 batch of 72 bunches
 - Instability in stable beam disappeared and the vertical chromaticity could be lowered again (~ 15)

- Since few days we have been injecting batches of 2 × 48 bunches from the SPS instead of 1 batch of 72 bunches
 - Instability in stable beam disappeared and the vertical chromaticity could be lowered again (~ 15)
 - However, some bunches are now unstable during collision process (Adjust)...

- Since few days we have been injecting batches of 2 × 48 bunches from the SPS instead of 1 batch of 72 bunches
 - Instability in stable beam disappeared and the vertical chromaticity could be lowered again (~ 15)
 - However, some bunches are now unstable during collision process (Adjust)...

Courtesy of X. Buffat

- Since few days we have been injecting batches of 2 × 48 bunches from the SPS instead of 1 batch of 72 bunches
 - Instability in stable beam disappeared and the vertical chromaticity could be lowered again (~ 15)
 - However, some bunches are now unstable during collision process (Adjust)...

• Actions taken

- Actions taken
 - Linear coupling corrected all along the cycle and in particular during betatron squeeze

- Actions taken
 - Linear coupling corrected all along the cycle and in particular during betatron squeeze
 - Laslett tune shifts now corrected automatically at injection

Actions taken

- Linear coupling corrected all along the cycle and in particular during betatron squeeze
- Laslett tune shifts now corrected automatically at injection
- Vertical chromaticities increased by 7 units in stable beam (to reach values of ~ 20-25) => Almost completely suppressed vertical emittance blow-up

Actions taken

- Linear coupling corrected all along the cycle and in particular during betatron squeeze
- Laslett tune shifts now corrected automatically at injection
- Vertical chromaticities increased by 7 units in stable beam (to reach values of ~ 20-25) => Almost completely suppressed vertical emittance blow-up
- Next: try and measure vertical tune shift along a batch during stable beam to try and confirm the proposed mechanism for beam instabilities in stable beam => Expected tune shift of the order of 10⁻⁴...

Lessons learned

Lessons learned

Linear coupling has to be well corrected all along the LHC cycle to avoid using too much octupole current

- Lessons learned
 - Linear coupling has to be well corrected all along the LHC cycle to avoid using too much octupole current
 - Even in the presence of a large tune spread in stable beam (due to BBHO) the beam can become unstable

- Lessons learned
 - Linear coupling has to be well corrected all along the LHC cycle to avoid using too much octupole current
 - Even in the presence of a large tune spread in stable beam (due to BBHO) the beam can become unstable
 - Fortunately the beam could be stabilised by increasing considerably the vertical chromaticities (to values as high as ~ 20-25), which still leads however to sufficiently good lifetimes => A high chromaticity does not seem to be an issue for the current LHC

- Lessons learned
 - Linear coupling has to be well corrected all along the LHC cycle to avoid using too much octupole current
 - Even in the presence of a large tune spread in stable beam (due to BBHO) the beam can become unstable
 - Fortunately the beam could be stabilised by increasing considerably the vertical chromaticities (to values as high as ~ 20-25), which still leads however to sufficiently good lifetimes => A high chromaticity does not seem to be an issue for the current LHC
 - Instabilities can also be observed during the collision (Adjust) process with the positive sign of the Landau octupoles (to be confirmed and studied in detail)

 The LHC just reached the design peak luminosity of 10³⁴ cm⁻² s⁻¹ at 6.5 TeV and with ~25% less bunches than nominal

- The LHC just reached the design peak luminosity of 10³⁴ cm⁻² s⁻¹ at 6.5 TeV and with ~25% less bunches than nominal
- For HL-LHC the bunch brightness will increase by a factor ~ 3

Impedance-induced transverse beam instability

Impedance-induced transverse beam instability

Elias Métral, HB2016 workshop, Malmö, Sweden, 05/07/2016

Courtesy of N. Biancacci
Impedance-induced transverse beam instability

Elias Métral, HB2016 workshop, Malmö, Sweden, 05/07/2016

Courtesy of N. Biancacci

Impedance-induced transverse beam instability

Elias Métral, HB2016 workshop, Malmö, Sweden, 05/07/2016

Courtesy of N. Biancacci

• Beam-Beam

Elias Métral, HB2016 workshop, Malmö, Sweden, 05/07/2016

Courtesy of C. Tambasco

• Beam-Beam

Courtesy of C. Tambasco

• E-cloud

Elias Métral, HB2016 workshop, Malmö, Sweden, 05/07/2016

E-cloud => Huge campaign of simulations on-going

Elias Métral, HB2016 workshop, Malmö, Sweden, 05/07/2016

- E-cloud => Huge campaign of simulations on-going
 - Try and (fully) understand the recently observed vertical emittance blow-ups in stable beam after few hours in LHC

- E-cloud => Huge campaign of simulations on-going
 - Try and (fully) understand the recently observed vertical emittance blow-ups in stable beam after few hours in LHC
 - How will the LHC conditioning evolve?

- E-cloud => Huge campaign of simulations on-going
 - Try and (fully) understand the recently observed vertical emittance blow-ups in stable beam after few hours in LHC
 - How will the LHC conditioning evolve? Will we be able to remove the e⁻ from the dipoles?

- E-cloud => Huge campaign of simulations on-going
 - Try and (fully) understand the recently observed vertical emittance blow-ups in stable beam after few hours in LHC
 - How will the LHC conditioning evolve? Will we be able to remove the e⁻ from the dipoles? Effect(s) of these e⁻ on beam stability?

- E-cloud => Huge campaign of simulations on-going
 - Try and (fully) understand the recently observed vertical emittance blow-ups in stable beam after few hours in LHC
 - How will the LHC conditioning evolve? Will we be able to remove the e⁻ from the dipoles? Effect(s) of these e⁻ on beam stability?
 - Effect(s) of the e⁻ in quadrupoles on beam stability?

- E-cloud => Huge campaign of simulations on-going
 - Try and (fully) understand the recently observed vertical emittance blow-ups in stable beam after few hours in LHC
 - How will the LHC conditioning evolve? Will we be able to remove the e⁻ from the dipoles? Effect(s) of these e⁻ on beam stability?
 - Effect(s) of the e⁻ in quadrupoles on beam stability?
 - Etc.

Elias Métral, HB2016 workshop, Malmö, Sweden, 05/07/2016

 In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity
 - Landau octupoles (and other intrinsic nonlinearities)

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity
 - Landau octupoles (and other intrinsic nonlinearities)
 - Transverse damper

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity
 - Landau octupoles (and other intrinsic nonlinearities)
 - Transverse damper
 - Space charge

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity
 - Landau octupoles (and other intrinsic nonlinearities)
 - Transverse damper
 - Space charge
 - Beam-beam: BBLR and BBHO

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity
 - Landau octupoles (and other intrinsic nonlinearities)
 - Transverse damper
 - Space charge
 - Beam-beam: BBLR and BBHO
 - Electron cloud

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity
 - Landau octupoles (and other intrinsic nonlinearities)
 - Transverse damper
 - Space charge
 - Beam-beam: BBLR and BBHO
 - Electron cloud
 - Linear coupling strength

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity
 - Landau octupoles (and other intrinsic nonlinearities)
 - Transverse damper
 - Space charge
 - Beam-beam: BBLR and BBHO
 - Electron cloud
 - Linear coupling strength
 - Tune separation between the transverse planes (bunch by bunch)

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity
 - Landau octupoles (and other intrinsic nonlinearities)
 - Transverse damper
 - Space charge
 - Beam-beam: BBLR and BBHO
 - Electron cloud
 - Linear coupling strength
 - Tune separation between the transverse planes (bunch by bunch)
 - Tune split between the two beams (bunch by bunch)

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity
 - Landau octupoles (and other intrinsic nonlinearities)
 - Transverse damper
 - Space charge
 - Beam-beam: BBLR and BBHO
 - Electron cloud
 - Linear coupling strength
 - Tune separation between the transverse planes (bunch by bunch)
 - Tune split between the two beams (bunch by bunch)
 - Transverse beam separation between the two beams

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity
 - Landau octupoles (and other intrinsic nonlinearities)
 - Transverse damper
 - Space charge
 - Beam-beam: BBLR and BBHO
 - Electron cloud
 - Linear coupling strength
 - Tune separation between the transverse planes (bunch by bunch)
 - Tune split between the two beams (bunch by bunch)
 - Transverse beam separation between the two beams
 - Noise

- In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analyzed in detail, including the
 - Beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities at large βfunction)
 - Linear and nonlinear chromaticity
 - Landau octupoles (and other intrinsic nonlinearities)
 - Transverse damper
 - Space charge
 - Beam-beam: BBLR and BBHO
 - Electron cloud
 - Linear coupling strength
 - Tune separation between the transverse planes (bunch by bunch)
 - Tune split between the two beams (bunch by bunch)
 - Transverse beam separation between the two beams
 - Noise
- Elias Métral, HB2016 workshop, Malmö, Sweden, 05/07/2016

 Transverse instabilities are a concern based on the experience of the LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)

- Transverse instabilities are a concern based on the experience of the LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)
- 2 questions since 2012 => Why do we need (at high energy) to use

- Transverse instabilities are a concern based on the experience of the LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)
- 2 questions since 2012 => Why do we need (at high energy) to use
 - High chromaticities (~ +15 units... and even more recently...)? A known/ predicted mechanism is e-cloud at injection...

- Transverse instabilities are a concern based on the experience of the LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)
- 2 questions since 2012 => Why do we need (at high energy) to use
 - High chromaticities (~ +15 units... and even more recently...)? A known/ predicted mechanism is e-cloud at injection...
 - Max current in the Landau octupoles (max = 550 A), i.e. much more (factor ~ 5) than predicted from impedance only?

- Transverse instabilities are a concern based on the experience of the LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)
- 2 questions since 2012 => Why do we need (at high energy) to use
 - High chromaticities (~ +15 units... and even more recently...)? A known/ predicted mechanism is e-cloud at injection...
 - Max current in the Landau octupoles (max = 550 A), i.e. much more (factor ~ 5) than predicted from impedance only?
- We have identified 3 possible mechanisms (so far) which could explain a factor ~ 5 increase in required current of Landau octupoles

- Transverse instabilities are a concern based on the experience of the LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)
- 2 questions since 2012 => Why do we need (at high energy) to use
 - High chromaticities (~ +15 units... and even more recently...)? A known/ predicted mechanism is e-cloud at injection...
 - Max current in the Landau octupoles (max = 550 A), i.e. much more (factor ~ 5) than predicted from impedance only?
- We have identified 3 possible mechanisms (so far) which could explain a factor ~ 5 increase in required current of Landau octupoles
 - Noise => Already predicted by simulations but not measured yet. 1st BTF measurements and related Stability Diagram at injection made in 2015

- Transverse instabilities are a concern based on the experience of the LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)
- 2 questions since 2012 => Why do we need (at high energy) to use
 - High chromaticities (~ +15 units... and even more recently...)? A known/ predicted mechanism is e-cloud at injection...
 - Max current in the Landau octupoles (max = 550 A), i.e. much more (factor ~ 5) than predicted from impedance only?
- We have identified 3 possible mechanisms (so far) which could explain a factor ~ 5 increase in required current of Landau octupoles
 - Noise => Already predicted by simulations but not measured yet. 1st BTF measurements and related Stability Diagram at injection made in 2015
 - Linear coupling between the transverse planes => Already predicted from simulations and measured in MD

- Transverse instabilities are a concern based on the experience of the LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)
- 2 questions since 2012 => Why do we need (at high energy) to use
 - High chromaticities (~ +15 units... and even more recently...)? A known/ predicted mechanism is e-cloud at injection...
 - Max current in the Landau octupoles (max = 550 A), i.e. much more (factor ~ 5) than predicted from impedance only?
- We have identified 3 possible mechanisms (so far) which could explain a factor ~ 5 increase in required current of Landau octupoles
 - Noise => Already predicted by simulations but not measured yet. 1st BTF measurements and related Stability Diagram at injection made in 2015
 - Linear coupling between the transverse planes => Already predicted from simulations and measured in MD
 - E-cloud => Already measured in MD/physics but simulations still to come