Beam Dynamics Challenges in IFMIF

HB2016, Malmö, Sweden

N. Chauvin¹, P.A.P. Nghiem¹, M. Comunian², C. Oliver Amoros³, D. Uriot¹

Nicolas.Chauvin@cea.fr

¹ Commissariat à l'Énergie Atomique et aux Énergies Alternatives, DRF/Irfu; F-91191 Gif-sur-Yvette, France
² INFN/LNL, Legnaro, Padova, Italy

³ CIEMAT, Madrid, Spain

July 5, 2016

Overview

1 IFMIF Issues & Challenges

2 Accelerator Matching and Tuning

3 Beam Loss Predictions

Massive Computing for IFMIF Beam Dynamics Simulations

BD Challenges IFMIF

Issues & Challenges HE/HP Issues

Matching & Tuning IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

Overview

BD Challenges

1 IFMIF Issues & Challenges

- High Intensity and High Power IssuesIFMIF & LIPAc Layout
- 2 Accelerator Matching and Tuning
- Beam Loss Predictions
- Massive Computing for IFMIF Beam Dynamics Simulations

² Issues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

only at high energy

BD Challenges **High Power Beam** IFMIF • $P = I_B \times E_B$ Even very small losses can be harmful HF/HP Issues Losses can cause: 10 IFMIF & LIPAc Lavout 10 Activation 10⁶ Quench of SRF cavities seam power (W) 10⁵ Machine damages due to IEM/R 10 SNSupar power deposition IPARC Project) LINACA If 1 MW beam, losses 10 100 1000 should be kept under $\approx 10^{-6}$ Energy (MeV) of the beam At "low" current (≈mA) or Results: Densities low duty cycle, high power Results: Beam Losses

Results: Beam Losses

BD Challenges **High Intensity Beam** IFMIF Generalized perveance $K = \frac{I_B}{I_0} \frac{2}{\beta^3 v^3}$ High intensity means strong HF/HP Issues 10 IFMIF & LIPAc Lavout space charge, especially at 10 IEMIE 10 low energy LINAC4 10-5 IPAR(SMS 10 Non-liner SC forces may ProjectX 10 10 cause: 10 Emittance Growth 10⁻¹⁰ 10-11 Beam Halo 100 1000 ... and eventually beam Energy (MeV) losses Beam dynamics can be Results: Densities

challenging *especially at low energy*

BEAM DYNAMICS

High intensity: accelerator matching and tuning is delicate **High power:** keep the beam losses have to be kept as low as possible

The combination of high beam intensity and high beam power leads to a very challenging situation

For a detailed view on the subject:

P.A.P Nghiem et al, Laser and Particle Beams (2014), 32, 639-649.

BD Challenges IFMIF

lssues & Challenges

5

HE/HP Issues

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

BEAM DYNAMICS

High intensity: accelerator matching and tuning is delicate **High power:** keep the beam losses have to be kept as low as possible

The combination of high beam intensity and high beam power leads to a very challenging situation

For a detailed view on the subject:

P.A.P Nghiem et al, Laser and Particle Beams (2014), 32, 639-649.

BD Challenges IFMIF

lssues & Challenges

5

HE/HP Issues

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

IFMIF & LIPAc

LIPAc Layout and Main parameters

LIPAc Main Parameters

- Continuous D⁺ beam
- Intensity: 125 mA
- LIPAc final energy: 9 MeV
- Hands-on maintenance

- ECR source & 2 solenoids LEBT
- 9.78 m 4-vanes RFQ @ 175 MHz
- MEBT and SFR linac (low β HWR).
- HEBT, Diagnostics Plate and Beam Dump

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues

IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

IFMIF Accelerator Layout and Main Parameters

IFMIF Main Parameters

- Continuous D⁺ beam
- Intensity: 125 mA
- IFMIF final energy: 40 MeV
- Rectangular beam footprint on target

- SFR linac: 4 crymodules
- 3 cryomodule types
- 2 cavity types (low $\beta = 0.094$ and 0.166).
- HEBT ~40 m long with high-order multipoles

IFMIF

BD Challenges

IFMIF & LIPAc Lavout

IFMIE Halo Matching **BD & Diagnostics**

Results: Densities Results: Phase Space Results: Beam Losses

Overview

IFMIF Issues & Challenges

2 Accelerator Matching and Tuning

- IFMIF Halo Matching
- Emittance Matching vs Halo Matching
- Beam Dynamics and Beam Diagnostics for IFMIF

Beam Loss Predictions

Massive Computing for IFMIF Beam Dynamics Simulations

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

Accelerator Matching and Tuning

Considerations on Matching High Intensity Linacs

- If the beam is sent to a target, the emittance growth in not the primary figure of merit
- To keep a hands-on maintenance, minimizing the machine activation is mandatory
- Accelerator matching method achieved by beam dynamics simulations should be **transposed directly** to the real machine tuning phase.

Linac Matching

- Minimization of beam extent
- Directly minimization of the halo
- ⇒ Halo Matching

Real Machine tuning

- Minimization of beam losses
- Loss detection at 10⁻⁶ of the beam: micro losses
- $\Rightarrow \mu loss Monitors$

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

10 Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

Accelerator Matching and Tuning

Considerations on Matching High Intensity Linacs

- If the beam is sent to a target, the emittance growth in not the primary figure of merit
- To keep a hands-on maintenance, minimizing the machine activation is mandatory
- Accelerator matching method achieved by beam dynamics simulations should be transposed directly to the real machine tuning phase.

Linac Matching

- Minimization of beam extent
- Directly minimization of the halo
- \Rightarrow Halo Matching

Real Machine tuning

- Minimization of beam losses
- Loss detection at 10⁻⁶ of the beam: micro losses
- $\Rightarrow \mu$ loss Monitors

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

10 Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

IFMIF Halo Matching

Halo Matching

- Multi-particle optimisation
- Numerous parameters (solenoids, quads,...)
- Non-linear problem
- Possible local minima

Particle Swarm Optimization for Halo Matching

- Explore a wide range in the space of solutions
- These kind of algorithms becomes more efficient with a high number of parameters.
- Efficient to avoid local minima
- Algorithm can be easily run in parallel on a cluster

Kennedy, J. & Eberhart, R. Particle swarm optimization. Proc. of IEEE Int. Conf. on Neural Networks (1985).

FAM OWAMC

lssues &

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

11

IFMIF Halo Matching

Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

IFMIF Halo Matching

Halo Matching

- Multi-particle optimisation
- Numerous parameters (solenoids, quads,...)
- Non-linear problem
- Possible local minima

Particle Swarm Optimization for Halo Matching

- Explore a wide range in the space of solutions
- These kind of algorithms becomes more efficient with a high number of parameters.
- Efficient to avoid local minima
- Algorithm can be easily run in parallel on a cluster

Kennedy, J. & Eberhart, R. Particle swarm optimization. Proc. of IEEE Int. Conf. on Neural Networks (1985).

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

11

IFMIF Halo Matching

Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

Emittance Matching vs Halo Matching

Emittance/RMS matching

Halo matching

P.A.P Nghiem et al, Laser and Particle Beams (2014), 32, 10-118.

BD Challenges IFMIF

Issues & Challenges HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

12

Massive Computing

The SNS Experience

Beam Dynamics and Beam Diagnostics for IFMIF

Diagnostics for Beam Characterization

- Beam commissioning or beam physics
- Measurements during beam commissioning only (lack of space)
- Interceptive devices for low duty cycle

→profile, emittance, halo, energy spread, bunch length

Diagnostics for Beam Tuning

- Commissioning, tuning & operating the accelerator
- To meet required specifications of current and losses
- Available for everyday beam tuning at full power: non interceptive

→beam position, beam energy, current, losses, micro-losses

J. Marroncle et al. R&D on micro-Loss Monitors for High Intensity Linacs like LIPAc THAM3Y01

BD Challenges IFMIF

Issues & Challenges HE/HP Issues

Matching & Tuning IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

Overview

IFMIF Issues & Challenges

2 Accelerator Matching and Tuning

3 Beam Loss Predictions

Massive Computing for IFMIF Beam Dynamics Simulations

BD Challenges IFMIF

Issues & Challenges HE/HP Issues

FMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

15 Beam Losses

Massive Computing

IFMIF Beam Losses Issues

High Beam Power

- The *whole* accelerator is concerned by **high power beam**: from 15 kW in the LEBT to 5 MW in the HEBT.
- Even a *tiny part* of the beam, when lost, represents a **significant power deposition**.

Beam Losses

- *Permanent loss* can **activate** material: hands-on? Also cooling cryogenic systems potential problems.
- Accidental loss leads to sudden heat deposition and can damage equipment.

High beam power almost all along the accelerator: meticulous and exhaustive prediction of losses is needed

BEAM DYNAMICS

BD Challenges IFMIF

Issues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

16 Beam Losses

Massive Computing

IFMIF Beam Losses Issues

High Beam Power

- The *whole* accelerator is concerned by **high power beam**: from 15 kW in the LEBT to 5 MW in the HEBT.
- Even a *tiny part* of the beam, when lost, represents a **significant power deposition**.

Beam Losses

- *Permanent loss* can **activate** material: hands-on? Also cooling cryogenic systems potential problems.
- Accidental loss leads to sudden heat deposition and can damage equipment.

High beam power almost all along the accelerator: meticulous and exhaustive prediction of losses is needed

BD Challenges

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

16 Beam Losses

Massive Computing

IFMIF Beam Losses Issues

High Beam Power

- The *whole* accelerator is concerned by **high power beam**: from 15 kW in the LEBT to 5 MW in the HEBT.
- Even a *tiny part* of the beam, when lost, represents a **significant power deposition**.

Beam Losses

- *Permanent loss* can **activate** material: hands-on? Also cooling cryogenic systems potential problems.
- Accidental loss leads to sudden heat deposition and can damage equipment.

High beam power almost all along the accelerator: meticulous and exhaustive prediction of losses is needed

BD Challenges IFMIF

Issues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

16 Beam Losses

Massive Computing

Beam Loss Predictions Catalogue of Losses

Double Issue

- Define thoroughly the loss situations in the accelerator lifetime
- **②** Define the protocols to simulate and estimate them

Five loss situations can be determined

- A. Ideal machine
- B. Machine "day one"
- C. Beam commissioning, tuning, exploration
- D. Routine operation
- E. Sudden failure

Catalogue of Losses

Affects all the subsystems: hot points, beam stop system velocity, limitations for control system, maximum beam power for operation, dynamic range of diagnostics, etc.

BD Challenges IFMIF

Issues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

17 Beam Losses

Massive Computing

Beam Loss Predictions Catalogue of Losses

Double Issue

- Define thoroughly the loss situations in the accelerator lifetime
- **②** Define the protocols to simulate and estimate them

Five loss situations can be determined

- A. Ideal machine
- B. Machine "day one"
- C. Beam commissioning, tuning, exploration
- D. Routine operation
- E. Sudden failure

Catalogue of Losses

Affects all the subsystems: hot points, beam stop system velocity, limitations for control system, maximum beam power for operation, dynamic range of diagnostics, etc.

BD Challenges IFMIF

Issues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

17 Beam Losses

Massive Computing

Beam Loss Predictions Catalogue of Losses

Double Issue

- Define thoroughly the loss situations in the accelerator lifetime
- **②** Define the protocols to simulate and estimate them

Five loss situations can be determined

- A. Ideal machine
- B. Machine "day one"
- C. Beam commissioning, tuning, exploration
- D. Routine operation
- E. Sudden failure

Catalogue of Losses

Affects all the subsystems: hot points, beam stop system velocity, limitations for control system, maximum beam power for operation, dynamic range of diagnostics, etc.

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

17 Beam Losses

Massive Computing

Example for LIPAc: Sudden Failure

Beam power lost in case of RFQ failure

Power lost in case of LEBT and RFQ failure

- 10 W losses in the SRF linac for 90% of the RFQ voltage
- Less losses in SRF linac and HEBT in case of failure of the three elements

P.A.P. Nghiem, N. Chauvin, M. Comunian, C. Oliver AND D. Uriot A catalogue of losses for a high power, high intensity accelerator Laser and Particle Beams (2014), 32, 461–469.

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

18 Beam Losses

Massive

Overview

2 Accelerator Matching and Tuning

Beam Loss Predictions

Massive Computing for IFMIF Beam Dynamics Simulations

- Goals and Method
- Beam Densities Along the Accelerator
- Phase Space Distributions
- Beam Losses in LIPAc

BD Challenges IFMIF

Issues & Challenges HE/HP Issues

FMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

19 Massive Computing

Massive Computing for Beam Dynamics Simulations

BEAM DIMANUS

Goals

- Simulations with 10⁹ macro-particles
- Halo formation and longitudinal dynamics
- Statistical error studies
- Improvement of simulation tools

Method

- TraceWin code is used
- Distributed calculations on several machine types
- Massive hard drive storage (70 To HDD)
- Dedicated data analysis software has been written (using ROOT Data Analysis Framework)

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

20

Goals and Method

Results: Densities Results: Phase Space Results: Beam Losses

Massive Computing for Beam Dynamics Simulations

Results: Beam Losses

Distributed calculations using the TraceWin code

Simulation of IFMIF-LIPAc

Some numbers...

- Simulation with the actual number of particles in a bunch: 4.7×10⁹
- Storage of 6D beam distributions at 2000 positions along the accelerator (every 2cm): 38 To
- Computing: 25 days running on 170 CPUs
- Post processing: ~12 hours running on 30 CPUs

Used Accelerator Models

- Initial conditions: particles are randomly generated from a simulation of the ion source extraction system (Axcel-INP)
- LEBT: space charge compensation profile determined with a PIC self-consistent code
- RFQ, SRF Linac and HEBT are modeled by field maps (1D or 3D)

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

22 Goals and Method

Results: Densities Results: Phase Space Results: Beam Losses

Simulation of IFMIF-LIPAc

Some numbers...

- Simulation with the actual number of particles in a bunch: 4.7×10⁹
- Storage of 6D beam distributions at 2000 positions along the accelerator (every 2cm): 38 To
- Computing: 25 days running on 170 CPUs
- Post processing: ~12 hours running on 30 CPUs

Used Accelerator Models

- Initial conditions: particles are randomly generated from a simulation of the ion source extraction system (Axcel-INP)
- LEBT: space charge compensation profile determined with a PIC self-consistent code
- RFQ, SRF Linac and HEBT are modeled by field maps (1D or 3D)

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

22

Goals and Method

Results: Densities Results: Phase Space Results: Beam Losses

Simulation Results Beam Density along the LIPAc

Beam Density: X plane

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

Goals and Method

Results: Densities Results: Phase Space

lesults: Beam Losses

Simulation Results Beam Density along the LIPAc

Beam Density: Y plane

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

Goals and Method

Results: Densities Results: Phase Space

lesults: Beam Losses

Simulation Results Beam Density along the LIPAc

Beam Density: energy

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

Goals and Method

Results: Densities Results: Phase Space

Results: Beam Losses

Simulation Results

Beam Distributions in Phase Spaces - Transverse Plane

xy distribution after RFQ

xy distribution after SRF-Linac

yy' distribution after RFQ

xy distribution on beam dump

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

24

Goals and Method Results: Densities Results: Phase Space

Results: Beam Losses

Simulation Results

Beam Distributions in Phase Spaces - Longitudinal Plane

 $\Phi \Delta \textbf{E}$ distribution after RFQ

zx distribution after RFQ

ΔE distribution after RFQ

 $\Phi \Delta \mathbf{E}$ distribution after SRF-linac

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

25

Goals and Method Results: Densities Results: Phase Space

Results: Beam Losses

Simulation Results Beam Losses in LIPAc

Beam losses in Watt through the accelerator

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

26

Simulation Results Beam Losses in LIPAC

Energy of the lost particles

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

27

Simulation Results Beam Losses in LIPAc

Distribution, after the RFQ, of the particles that will be lost downstream.

Conclusions

Conclusion

- "Halo matching" of the IFMIF linac has been simulated
- µloss monitors feasibility has been demonstrated
- Cautious prediction of losses
- High statistics multi-particle simulations
- Beam commissionong of LIPAc has started in Japan

M. Comunian et al. *IFMIF-EVEDA RFQ, Measurement of Beam Input Conditions and Preparation to Beam Commissioning* **TUPM4Y01**

Perspectives

- New studies in the framework of IFMIF/DONES
- Beam dynamics activities for SRF-linac and HEBT
- Goal: to be ready for IFMIF/DONES construction in 2020

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing

29

Conclusions

Conclusion

- "Halo matching" of the IFMIF linac has been simulated
- µloss monitors feasibility has been demonstrated
- Cautious prediction of losses
- High statistics multi-particle simulations
- Beam commissionong of LIPAc has started in Japan

M. Comunian et al. *IFMIF-EVEDA RFQ, Measurement of Beam Input Conditions and Preparation to Beam Commissioning* **TUPM4Y01**

Perspectives

- New studies in the framework of IFMIF/DONES
- Beam dynamics activities for SRF-linac and HEBT
- Goal: to be ready for IFMIF/DONES construction in 2020

BD Challenges IFMIF

lssues & Challenges

HE/HP Issues IFMIF & LIPAc Layout

Matching & Tuning

IFMIF Halo Matching Emittance vs Halo BD & Diagnostics

Beam Losses

Massive Computing Goals and Methor

Results: Densities Results: Phase Space Results: Beam Losses

29

Thank you for your attention !