

Institute of High Energy Physics

Instability investigation of China-ADS Injector-I SC section design

 $uSicon uouos o c \tau_uouofu$

YAN Fang, Cai Meng, Hui-ping Geng, Ya-liang Zhao IHEP, CAS, China

Lund, Sweden, July 3rd ~9th , 2016

1. Introduction

1. Introduction

SC section of the ADS Injector-I

However all these effect could be avoided by keeping the zero current longitudinal phase advance smaller than 90 degree!!!

Resonant conditions:

- Envelope instability
- Fourth order resonance
- > Third order resonance
- Sixth order resonance

Defined by: $nk = m \times 360$

n: nth order of resonance

m: harmonic of the focusing lattice

However only the 90° stop band and 60° degree stop band had been manifested as described in these two papers. PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 7, 024801 (2004)

Stability properties of the transverse envelope equations describing intense ion beam transport

Steven M. Lund* Lawrence Livermore National Laboratory, University of California, Livermore, California 94550, USA

Boris Bukh Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA (Received 13 June 2003; published 11 February 2004)

PRL 115, 204802 (2015)

PHYSICAL REVIEW LETTERS

week ending 13 NOVEMBER 2015

Space-Charge Structural Instabilities and Resonances in High-Intensity Beams

Ingo Hofmann^{1,2,*} and Oliver Boine-Frankenheim^{1,2} ¹GSI Helmholtzzentum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany ²Technische Universität Darmstadt, Schlossgartenstrasse 8, 64289 Darmstadt, Germany (Received 19 June 2015, published 10 November 2015)

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 054204 (2009)

Fourth order resonance of a high intensity linear accelerator

D. Jeon,^{1,*} L. Groening,² and G. Franchetti² ¹SNS, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ²GSI, Darmstadt, Germany (Received 15 January 2009; published 29 May 2009)

PRL 114, 184802 (2015)

PHYSICAL REVIEW LETTERS

week ending 8 MAY 2015

Sixth-Order Resonance of High-Intensity Linear Accelerators

Dong-O Jeon,^{1,*} Kyung Ryun Hwang,² Ji-Ho Jang,¹ Hyunchang Jin,¹ and Hyojae Jang¹ ¹Institute for Basic Science, Daejeon, Republic of Korea ²Department of Physics, Indiana University, Biloomington, Indiana 47405, USA (Received 6 February 2015; published 6 May 2015)

Resonant conditions:

- Envelope instability
- Fourth order resonance
- > Third order resonance
- Sixth order resonance

Defined by: $nk = m \times 360$

n: nth order of resonance

m: harmonic of the focusing lattice

However only the 90 $^{\circ}$ stop /

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 7, 024801 (2004)

Stability properties of the transverse envelope equations describing intense ion beam transport

Steven M. Lund* Lawrence Livermore National Laboratory, University of California, Livermore, California 94550, USA

Boris Bukh Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA (Received 13 June 2003; published 11 February 2004)

PRL 115, 204802 (2015)

PHYSICAL REVIEW LETTERS

week ending 13 NOVEMBER 2015

Space-Charge Structural Instabilities and Resonances in High-Intensity Beams

Ingo Hofmann^{1,2,*} and Oliver Boine-Frankenheim^{1,2} ¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany ²Technische Universität Darmstadt, Schlossgartenstrasse 8, 64289 Darmstadt, Germany (Received 19 June 2015; published 10 November 2015)

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 054204 (2009)

Fourth order resonance of a high intensity linear accelerator

D. Jeon,^{1,*} L. Groening,² and G. Franchetti² ¹SNS, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ²GSI, Darmstadt, Germany (Received 15 January 2009; published 29 May 2009)

PRL 114, 184802 (2015) PHYSICAL REVIEW LETTERS

week ending 8 MAY 2015

And the 90° and 60° stop band could be avoided by keeping the zero current transverse phase advance no bigger than 60 degree!

Transverse and longitudinal coupling

The linac was designed with fixed zero current phase advance ratio to give a current free design. One important beam dynamics resonant condition coupling the longitudinal and transverse motion is the k_i = 2k_i resonance.
Analysis of the coupling effect showed substantial amplitude and emittance growth*.

Further analyses show also other anisotropy instabilities identified by $k_z/k_t =$ 1/3, 1/2, 1 and 2 which lead to emittance transfer between transverse and longitudinal degrees of freedoms as described in the paper.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 6, 024202 (2003)

Space charge resonances in two and three dimensional anisotropic beams

I. Hofmann,^{*} G. Franchetti, and O. Boine-Frankenheim GSI, 64291 Darmstadt, Germany

J. Qiang and R. D. Ryne LBL, Berkeley, California 94720 (Received 9 October 2002; published 28 February 2003)

* T. P. Wangler, RF Linear Accelerators, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008) p. 319 and the reference therein.

Transverse and longitudinal coupling

The linac was designed with fixed zero current phase advance ratio to give a current free design. One important beam dynamics resonant condition coupling the longitudinal and transverse motion is the k_i = 2k_i resonance.
Analysis of the coupling effect showed substantial amplitude and emittance growth*.

Further analyses show also other anisotropy instabilities identified by $k_z/k_t =$ 1/3, 1/2, 1 and 2 which lead to emittance transfer between transverse and longitudinal degrees of freedoms as described in the paper.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 6, 024202 (2003)

Space charge resonances in two and three dimensional anisotropic beams

I. Hofmann,^{*} G. Franchetti, and O. Boine-Frankenheim GSI, 64291 Darmstadt, Germany

J. Qiang and R. D. Ryne LBL, Berkeley, California 94720 (Received 9 October 2002; published 28 February 2003)

* T. P. Wangler, RF Linear Accelerators, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008) p. 319 and the reference therein.

Transverse and longitudinal coupling

The linac was designed with fixed zero current phase advance ratio to give a current free design. One important beam dynamics resonant condition coupling the longitudinal and transverse motion is the k_i = 2k_i resonance.
Analysis of the coupling effect showed substantial amplitude and emittance growth*.

Further analyses show also other anisotropy instabilities identified by $k_z/k_t =$ 1/3, 1/2, 1 and 2 which lead to emittance transfer between transverse and longitudinal degrees of freedoms as described in the paper.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 6, 024202 (2003)

Space charge resonances in two and three dimensional anisotropic beams

I. Hofmann,^{*} G. Franchetti, and O. Boine-Frankenheim GSI, 64291 Darmstadt, Germany

J. Qiang and R. D. Ryne LBL, Berkeley, California 94720 (Received 9 October 2002; published 28 February 2003)

* T. P. Wangler, RF Linear Accelerators, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008) p. 319 and the reference therein.

Simulation conditions

- Multi-particle tracing with TraceWin program was used to investigate the beam performances while the working points were sitting on the resonance peaks
- Zero current phase advance ratio of $\sigma_{t0} / \sigma_{10} = 0.4/0.5/0.6/0.7/0.72/0.75$ cases were studied
- Models instead of 3d fields were used in the simulation to avoid introducing nonlinear effect
- Input energy: 3.2MeV / Peak current: I=10mA/14 periodical cells
- $4\sigma/5\sigma$ truncated Gaussian distribution were assumed for the initial transverse and longitudinal beam
- Norm. RMS emittance of the initial beam are: ε_x / ε_y / ε_z=0.198/0.199/0.159 mm.mrad
 99072 particles

Emittance growths *ⓐ different working points*

Emittance growths *(a) different working points*

Emittance growths *ⓐ different working points*

Footprint area selection

The working points were chosen between the $k_z / k_t = 1$ and $k_z / k_t = 2$ stop bands.

Beam dynamics conditions

- The SC section simulation was integrated with the MEBT section;
- TraceWin program was used for beam dynamics and error analysis; using RFQ simulated output:
 - Simulated with Parmteq.
 - 4d waterbag input with 100000 macro particles for the RFQ entrance.
 - Output Normalized rms emittance in x and y: 0.198 π.mm.mrad /0.199 π.mm.mrad.
 - **Output normalized rms emittance in z: 0.159 π.mm.mrad**

3d cavity and solenoid fields were used in the multi-particle simulations.

4. Beam dynamics

Beam dynamics results for nominal design

Simulation showed smooth rms envelope evolution with few percent of RMS normalized emittance growths.

5. Experiment results

5. Experiment results

Emittance measurements were carried out for the 5MeV test stand with one cryomodule installed in the tunnel as shown in the top figure.

Č ^	2	4	0	0	10	10	4.4	10				10 2 12 11
U	2	4	ю	ð	10	12	14	16		= 10		1 70 TO M
			Z	(m)					14	/.19	164./	cademy of Sciences
				• •								

Input twiss parameters & emittance of the SC section

Q1 B1 Q4

Q5

- Quad scan method was used at the MEBT section for RFQ exit emittance measurement

Vacuum pipe

07~09 010~012

Beam dump line

- Evolutionary algorithm instead of transfer map was used to consider the space charge effect
- Measurements beam RMS size with different Quads setting consistent with TraceWin simulation results as shown in the below figures (space charge effect was considered)
- Upper figures showed the deviation while SC effect was not considered in the data processing of the transfer map.

Transverse emittance measurement results V.S simulation at the exit of CM1 with nominal design

	Parameters	αχ/αγ	βx/βy (mm/mrad)	E _{n,rms,x/y} (π mm.mrad)	
CM1	Simulation results (errors not included)	-1.53/-1.55	1.20/1.63	0.20/0.25	
exit	Measurement (Double slits)	-2.12/-1.97	1.56/1.81	0.29/0.27	
RFQ	Simulation results (4D WB input)	-1.31/1.46	0.12/0.13	0.20/0.20	
exit	Measurement (Quads scan: with SC)	-1.22/1.10	0.16/0.10	0.16/0.24	

Transverse emittance measurement results V.S simulation at the exit of CM1 with nominal design

	Parameters	ax/ay	βx/ βy (mm/mrad)	$E_{n,rms,x/y}$ (π mm.mrad)
CM1 exit	Simulation results (with errors)	-1.68/-2.12	1.28/2.07	0.28/0.28
	Measurement (Double slits)	-2.12/-1.97	1.56/1.81	0.29/0.27

Emittance measurement results with different transverse over longitudinal zero current phase advance ratios

6. Summary

- Different instability factors were investigated during the design of the ADS injector-I SC section;
- Experiments were carried out for different zero current phase advance ratios of the 5MeV test stand SC section with 7 focusing periods;
- Beam was clearly twisted when the footprints were encountered with the resonance peaks, especially for the cases when zero current phase advances were smaller and the tune depression were around 0.4~0.5;
- More effects will be done to further understand the beam performances.

Acknowledgement

Sincere acknowledgement to the China ADS Injector-I commissioning group for the great efforts made during the commissioning.

