

Advances in the development of the ESS-Bilbao proton injector

Z. Izaola, I. Bustinduy, et. al. ESS-Bilbao July 5, 2016

What is ESS-Bilbao?

1. MEBT

2. RF Chain

ESS-Bilbao's RFQ

4. Neutron Instruments

Advances in the ESS-Bilbao proton injector

Z. Izaola, I. Bustinduy, et. al.

EURCPEAN SPALLATION SOURCE

2 / 23

The ESS-Bilbao Injector

The ISHP H^+ ECR Ion Source

Advances in the ESS-Bilbao proton injector

The ISHP H^+ ECR Ion Source

The ISHP H^+ ECR Ion Source

The LEBT, complete with 2 solenoids and 3 boxes

The design of the RFQ was finished July 2015

The first section of the RFQ is in production (July 2016)

The first section of the RFQ is in production (July 2016)

The RFQ should be built for late 2017

- From 45 keV to 3 MeV
- Total length of 3.12 m (4 segments)
- Uniform 85 kV inter-vane voltage
- First segment in fabrication
- Planned for late 2017

The LEBT: Comissionng stage #1 with one solenoid

The LEBT: Comissionng stage #1 with one solenoid

Beam Induced Fluorescence beam width is similar to WS

WS measures in 45°!

Solenoid raises transmission above $85\,\%$

 $B(\mathsf{T}) = 0.0013 \times I(\mathsf{A})$

Z. Izaola, I. Bustinduy, et. al.

We measure more than 100 profiles

Beam profiles at WS1 not Gaussian

Fringe field has more effect in "horizontal" wire

Best transmission is between 8.5 mm and 9.5 mm gap

Fridge field focus beam, reduces background

Beam profiles WS2 at 175 A show more than a peak

Measure 2D profiles for different plasma parameters

We find different "families"

Family	3	4	5	7	10
H_2 (%) flow	42	42	42	23	44
Coil#1 (A)	2	2	2	2	2
Coil#2 (A)	5.1	2	3.5	3.9	7.1
Coil#3 (A)	10	10	10	10	7.5
Coil#4 (A)	3.5	5.8	4.5	3.5	4.4

Photos similar to plasma distribution found in similar IS

Contributions to ECR Plasma Source Dynamics: Diagnostics Development and Experimental Results. Ana María Megía Macías. PhD. Thesis 2014

Advances in the ESS-Bilbao proton injector

Z. Izaola, I. Bustinduy, et. al.

17 / 23

Beam profiles WS2 at 175 A show more than a peak

Different ion specimens present in the beam

Integrated profiles allow calculate peak position

Different peak position and composition appear

Simulation allow to identify some peaks

	Position [mm]			Composition (%)			
Peak	#1	#2	#3	 #1	#2	#3	
	H^+	H_2^+	${ m H}_{3}^{+}(?)$	H^+	H_2^+	$H_3^+(?)$	
Family5	30.2	18.1	1.4	64	23	13	
Family7	32.1	22.4	1.3	24	67	9	
Simulation	30.9	21.4	17.1				

Peak #2 mix of H^+ and H_2^+ and peak #3 contamination?

Conclusions

- The effect of the plasma parameters on the extracted beam profiles is greater than we expected, if compared to the effect of the acceleration gap in these profile.
- Different ion source configurations show unlike profiles, not only in the plasma but also in the extracted beam, that are far from being "ideal Gaussian beam."

Future Work

- Improve H^+ proportion

Future Work

- Improve H^+ proportion
- Measure emittance

Future Work

- Improve H⁺ proportion
- Measure emittance
- "Map" of emittance at RFQ entrance for solenoid configurations

Advances in the ESS-Bilbao proton injector

Acknowledgement

Thanks to:

- I. Bustinduy
- J. Corres
- D. de Cos
- C. de la Cruz
- G. Harper
- R. Miracoli
- J. L. Muñoz
- I. Rueda
- A. Vizcaíno
- A. Zugazaga

To all the staff at ESS-Bilbao that works in the design, building and running of the injector.