

OPERATIONAL EXPERIENCE AND FUTURE PLANS AT ISIS

D.J. Adams

C.M. Warsop, B. Jones, B. Pine, H. Smith, R. Williamson, A. Seville, R. Mathieson, I.S.K. Gardner. D. Wright, A.H Kershaw, A Pertica, A Letchford, Chris Wilcox

Many members of Accelerator Division

STFC, Oxford, UK

Contents

- Brief overview of ISIS
- Beam performance
- Main Accelerator Upgrades
- Operations and Accelerator R&D
- Future Projects

- Neutron and Muon source used for condensed matter research by 3000 users.
- H- ion source (55 mA)
- 665 keV RFQ (35 (mA)
- 70 MeV linac (26 mA)
- 800 MeV 50 Hz, RCS (2.8x10¹³ ppp)
- Target $1 +$ Muon target (140 kW)
- Target 2 (36 kW)

Beam Performance

• First Beam in 1984, user operation in 1985, achieving full design current 160 kW (2.5x 10^{13} ppp) in 1992.

• Operation is beam loss limited to facilitate hands on maintenance.

Super Period 1 upgrade (2002)

Vertical

Elevation View of the Collectors in Super-Period 1

- Up to 10 % Trapping and Acceleration loss **Bullet Controllery Horizontal** managed on collimation systems to prevent machine damage and activation.
- **●** Collimators upgrades in 2002 13 Copper and Graphite water cooled blocks intercept \sim 2 KW.
- Energy capture range extended from 100-300 MeV

Pre-Injector Upgrade (2004)

- Replace aging Cockcroft Walton 665 keV injector with an RFQ
- Improved linac current from 19 mA to 26 mA allowing more ring power.
- 18 month offline test, internal cleaning for RF conditioning only issue.

Science & Technology Facilities Cound ISIS

DHRF Upgrade (2006-2012)

- Ring RF, 6 cavities $(h=2)$, 160 kV/turn 200 µA operation with 9% ring losses
- Add 4 cavities, h=4, 80 kV/turn, increased RF bucket acceptance and better bunching factors, 200 µA operation with 3 % loss.
- Achieved 230µA operationally and 250 µA during machine physics.

EPB1 Upgrades (2006-2015)

Muon Target (10 mm graphite) scatters proton beam to: collimators 1.4 % uncontrolled 0.47 % (quads+B)

Reduce collimator acceptance Larger quads, 2 extra (optic flex) Uncontrolled 0.06% @ B

Quad inserts for additional steering.

Extracted Proton Beamline

Operations and Accelerator R&D

Main operating issues are managing Ring beam loss.

 $1\ldotp\mathcal{L}$

Managing beam loss

- Operation with 4 % beam loss
- Correct machine orbits and envelopes errors then empirically tune on beam loss.
- 20 quads, 13 dipoles, Time dependant functions, \sim 20 steps in 10 ms.
- Strategy: Move beam loss to collimators and then minimise overall loss.

A. Ballymore

Diagnostic developments

- Ring Diagnostics: Intensity, beam loss, profile, position.
- Make more use of these by utilising developments to DAQ and CPU power: More acquired signals, data visualisation and comparison, automated measurements, model fitting and corrections.
- Fast measurements $(< 1s)$ make machine tuning/error diagnosis, parameter rather than signal lead.
- FPGA technologies, 50 Hz is possible.

Synchrotron Operating Limit

- In current configuration machine capable of accelerating 3.15x10¹³ with 9 % loss equivalent to 250 µA operation (200 kW)
- Limited by:

 machine acceptance (collimated to 75 %) (beam control/alignment)

Head Tail Instability

• Operated at 1.6 Hz only

Scintillators

Scintillator **BC408**

- Beam damage inside dipole caused by small uncontrolled loss from collimation straight.
- Normal BLM's outside dipole yoke shielded from loss.
- New non-metallic scintillator based BLM positioned inside rapid cycling dipole field to detect losses.
- Scintillators allow collimator and beam tuning setup without hitting dipole
- All ring dipoles will have scintillators by 2017

Multi Channel Profile Monitor

Guide field Channeletrons Compensating field

- Accurate transverse profile measurements key to machine setup and R&D topics.
- Residual Ionisation Profile monitors in development: 40 channeletrons, Non destructive
- Accurate reconstructed profiles require understanding effects of ion trajectory from
	- Guide fields
	- Space charge field
	- Channeletron response

Head-Tail Instability

- Driven by impedances Resistive wall (?), R Williamson MOPR031 Operation: Vertical Q ramp
	- Asymmetric bunches
- Damper system in development, 2018 operation

 0.5

Time (ms)

 $\overline{2}$ Time (ms)

Bunch Compression

Why shorten bunch?

- To improve frequency response of muon instruments
- Maintain low beam loss and good beam quality
- Machine setup
	- Ramp RF voltage down slowly before rapidly increasing \sim 0.2ms before extraction
	- Step frequency law trim in final 0.2ms
	- Switch off bunch length and phase loops in final 0.2ms
	- Tweak extraction to reduce loss
- Plans
	- Test at higher repetition rates
	- Further extraction beam loss reduction
	- Different methods of bunch compression

R E Williamson, R J Mathieson, D J Adams, et al

ORBIT Simulations

Goal : Understand ring loss dynamics.

ORBIT model: fitted to measured transverse and longitudinal profiles.

Predict losses and visualise dynamics for machine tuning.

Measured ORBIT injection profiles

Space Condition Phase Space

ৼ

Implementing non linear magnets at moment

ISIS

FLUKA Studies - ISIS Collectors

RESIDUAL DOSE RATE (mSv/hr)

- SP1 collector straight modelled in FLUKA
	- **ORBIT** beam loss input
- 170 mSv/hr measured, 415 mSv/hr simulated
- Total simulated power deposition 663 W, operationally 500-1500 W

Half Integer Resonance

(Y, Y', s)

- One of the main loss mechanism on ISIS
- Measured and simulated with ISIS in storage ring mode.
- Lobe behaviour acts as expected as a function of driving term and tune.
- Mathematical description in development with promising results. (Chris Warsop , MOPR030, HB2016)

Image Effects

- Effects of space charge and image forces from ISIS conformal rectangular vacuum vessels under study with in house SET3D code.
- Closed orbit errors generating sextupole resonances.
- Large deviations from design tune lead to reductions in machine acceptance and non linear driving terms

 $\kappa_{12} \frac{\hat{y}^2 \bar{y}}{44}$ is a sextupole term proportional to the closed orbit

MEBT upgrade

Existing linac envelopes Matched linac envelopes

Improve Matching between RFQ and Linac tank 1

Currently loose \sim 25 % beam.

Install MEBT to match into Linac Tank 1

7 Quads and 2 buncher cavities, 96 % transmission

Increase linac transmission current from 26 mA to 36 mA **Installation in 2019**

SIS

MEBT chopper

- ISIS RCS has 200 µs injection interval (133 turns). Dispersive horizontal painting 10-140 π mm mrad, Non adiabatic RF capture losses \sim 3 %
- MEBT chopper, 61 % chopping factor, ± 55° degrees RF in ring. , variable timing. Inj time : $26 \text{ mA} \sim 300 \mu\text{s}$, 36 mA \sim 200 µs
- H- Paint changes with pulse length, Peak space charge moves from 80 to 70 MeV. Studied in ORBIT to see impact on losses.

Future Upgrades

- Future upgrade paths under study, taking into account ISIS Instrument, Neutronics, Target and Accelerator groups .
- Accelerators options under consideration:
	- Increase ISIS injection energy to 180 MeV with upgraded linac, 0.5 MW
	- Multi MW Synchrotron or FFAG

(C. Prior WEAM6X01 talk tomorrow)

- Front End Test Stand (FETS): 60 mA, H⁻, 3 MeV technology demonstrator for next gen facilities. First RFQ beams this year.
	- Could be used to feed a new low energy FFAG, necessary for high power FFAG R&D.

Conclusion

- Since first operation in 1984 ISIS has continued to improve in operating intensity and beam control maintaining its position as a world class neutron facility.
- Numerous hardware upgrades and Accelerator R&D have provided extensive experience on how to operate a machine for nearly 4 decades and how to manage operations working near a realistic intensity limit.
- A future ISIS-II is under study to best utilise our experience as well as knowledge gained from the operation of other high power facilities.