HB2016

57th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams

LHC Injectors Upgrade for the HL-LHC

C. Bracco, J. Coupard, H. Damerau, A. Funken, B. Goddard, K. Hanke, A.M. Lombardi, D. Manglunki, S. Mataguez, M. Meddahi, B. Mikulec, G. Rumolo, R. Scrivens, E. Shaposhnikova, M. Vretenar, CERN, Geneva, Switzerland

Acknowledgments: J.L. Abelleira, W. Bartmann, E. Carlier, V. Forte, M. Fraser, E. Gianfelice Wendt, G. Grawer, J. Jowett, V. Kain, M. Lamont, F.L. Maciariello, R. Nouilbos, F.X. Nuiry, F. Pasdeloup, A. Perillo Marcone, F. Roncarolo, G.E. Steele, F.M. Velotti, W. Weterings

> 2016 July 3-8 Scandic Triangeln Hotel, Malmö, Sweden

C. Bracco - HB 2016

Outline

- HL-LHC Luminosity targets
- Injector upgrades overview
- Focus on:
 - Linac4 → PSB Transfer Lines (TL)
 - PSB injection
 - PSB → PS 2GeV transfer and injection
 - SPS:
 - Injection system
 - Intercepting devices
- Conclusions

Beam Parameters

To reach the target HL-LHC Luminosity one needs to:

- > Reduce β^* and increase the geometric factor F (LHC upgrade)
- Increase beam current and brightness (injectors upgrades)

Parameters at 450 GeV	LHC nominal	HL-LHC standard	HL-LHC BCMS
p.p.b (n _b)	1.15e11	2.3e11	2.0e11
# bunches (N _b)	2808	2748	2604
ε [m rad]	7.3e-9	4.4e-9	2.9e-9
B(HL-LHC)/B(LHC)	1	5	10

Injectors Upgrade Overview

- ➤ Linac4: 160 MeV H⁻ (MOAM2P20),
- PSB: New H⁻ charge exchange injection and acceleration to 2 GeV (MOPR028)
- PS: injection at 2 GeV for protons
- Linac3 and LEIR: increase ion current (TUAM5X01)
- SPS: RF system upgrade, e-cloud mitigation (TUAM4X01), lower impedance and instabilities (MOPR010, MOPR011, MOPR013,TUAM3X01), improved injection and extraction HW, new dump and protection devices (including SPS → LHC Transfer Lines)

Injectors Upgrade Overview

- Linac4: 160 MeV H⁻ (MOAM2P20),
- PSB: New H⁻ charge exchange injection and acceleration to 2 GeV (MOPR028)
- PS: injection at 2 GeV for protons
- Linac3 and LEIR: increase ion current (TUAM5X01)
- SPS: RF system upgrade, e-cloud mitigation (TUAM4X01), lower impedance and instabilities (MOPR010, MOPR011, MOPR013,TUAM3X01), improved injection and extraction HW, new dump and protection devices (including SPS → LHC Transfer Lines)

Ready for possible Linac4 connection!

W. Weterings

Modify BI.DIS for 4.3 mrad @ 160 MeV

Performance increase of 1.9 in ∫B•dl of BI.DVT30, BI.QNO30, BI.QNO40, BI.DVT40.

CERI

Curs1 Pos

M 100µs 25.0MS/s

mm

≤ 2 µs rise time and ±1 % ripple achieved

05/07/16

FR

Half Sector Test (HST) and Stripping Foil Test

KSW modulation

Optimization studies (see also THPM9X01)

Effect of tune on transverse painting: Tune 1: Q_x =4.28, Q_y =4.55 (baseline) Tune 2: Q_x =4.43, Q_y =4.60 (alternative)

Evolution particle distribution ISOLDE beam

J.L. Abelleira Fernandez

			٤ _{N.x}	~	Longitu	KSW waveforms				
USER	ppr [10 ¹²]	Y _{off} [mm]	(H/V) [mm mrad]	^{د_{N,y} [mm mrad]}	dinal painting	t ₁ [μs]	I ₁ /I ₀	t ₂ [µs]	I ₂ /I ₀	t ₃ [µs]
NORMGPS/HR S*	16	8	13(15)	6(8)	yes	20	0.53	100	0.52	107.82
NORMGPS/HR S*	13	8	13(15)	6(8)	yes	22	0.51	80	0.50	87.62
STAGISO	6.6	6.5	5	4	yes	15	0.70	40	0.69	49.52
STAGISO	3.4	6.5	5	4	no	16	0.61	20	0.60	28.62
CNGS like*	8	8	10	6(8)	yes	20	0.55	50	0.54	58.02
NTOF*	9	8	10	6(10)	yes	18	0.58	60	0.57	68.32
AD	6.5	8	8	6	yes	16	0.61	40	0.60	48.62
AD	4	8	8	6	no	23	0.44	25	0.43	31.92
SFTPRO	6	8	8	6	yes	17	0.6	40	0.59	48.52
SFTPRO	6	8	8	6	no	17	0.59	37	0.58	45.42
LHC 1	3.42	3	1.2	1.2	no	10	0.88	21	0.87	32.32
LHC2	3.42	0	0.6	0.6	no	10	1.00	21	1.00	33.62

* Emittance which fits in HW acceptance

- After Linac4 and PSB injection upgrade, the injection in the PS would be the new bottleneck due to space charge → 1.4 to 2 GeV to mitigate space charge
- Required upgrades
 - All magnets have to cope with 30% increase in rigidity
 - Transfer LHC beams with minimal possible emittance growth and large emittance fixed target beams with reduced losses → TL with pulse to pulse modulated (ppm) capability which allows for different optics from cycle to cycle
 - Maintain 1.4 GeV transfer possibility (i.e. ISOLDE)

CERN

HW changes:

- PSB extraction system with minor modifications (powering margins)
- Recombination septa length increased (same cross section, same tank)
- Need of upgrading recombination kickers (KFA10 and KFA20) is being investigated
- New recombination and switching dipoles, new quadrupoles, new powering
- New dumps (already installed) and beam stoppers
- New eddy current injection septum
- Reconfiguration of PS injection kicker into permanent short-circuit mode

Optics, stability and emittance growth:

- ➤ Unavoidable optics mismatch dominates the emittance growth → minimise the spread in betatron and dispersion functions between the different lines.
- The emittance growth due to dynamic magnet errors was studied and used for magnet specifications
- Systematic errors from kicker waveforms have been studied by folding longitudinal bunch profiles and kicker waveforms in order to get a weighted effect of emittance growth from kicker field ripple.

	Hor/Ver I	Emittance g	growth [%]
Mismatch	LHC	HL-LHC	High Int.
Steering	0.3/1.5	0.3/1.5	0.1/0.5
Betatron	4.6/6.8	1.3/0.0	2.0/0.0
Dispersion	4.4/8.8	0.2/2.4	0.0/5.3
Total	6.3/11.2	1.3/2.8	2.0/5.3

W. Bartmann

Optics, stability and emittance growth:

- The emittance growth due to dynamic magnet errors was studied and used for magnet specifications
- Systematic errors from kicker waveforms have been studied by folding longitudinal bunch profiles and kicker waveforms in order to get a weighted effect of emittance growth from kicker field ripple.

LIU Goal for lons

SPS injection kickers MKP:

- 3 tanks with 5-5-2 fast kickers MKP-S (150 ns rise time 2-98%)
- 1 tank with 4 slow kickers MKP-L \triangleright (225 ns)

Reduced ion bunch spacing at injection \rightarrow injection kicker rise time down to 100 ns (additional PFL in parallel to existing PFN) less strong kick -> additional septa MSIV.

RING POSITION 11931

HV I HV4 SUPPLY SUPPLY SUPPLY SUPPLY SUPPLY SUPPLY MAGNET MODULE MAGNET MODULE 10 MAGNET MAGNET MAGNET MAGNET MAGNET MAGNET MAGNET MAGNET MAGNET MODULE 12 MAGNET MODULE 13 MODULE 4 MODULE AODULE 7 B 14 3 11 VACUUM TANK 1 : 16.67 VACUUM TANK 2 : 16.67 0 ACUUM TANK S: 16.67 VACUUM TANK 4 : 12.5 0

RINC POSITION 11936

RING POSITION 11952

MODULE 15

RING POSITION 11955

MODULI 16

Possible reduce rise time from 250 ns to 150-175 ns with present system? Beam quality: emittance growth and tails population?

Possible reduce rise time from 250 ns to 150-175 ns with present system? Beam quality: emittance growth and tails population?

Idea: use only the fast MKP-S (49 kV) and reduce the required kick by introducing an injection bump (plus improved synchronization between different modules \rightarrow 30 ns gain in jitter).

B. Goddard, E. Carlier and F.M. Velotti

Possible reduce rise time from 250 ns to 150-175 ns with present system? Beam quality: emittance growth and tails population?

Idea: use only the fast MKP-S (49 kV) and reduce the required kick by introducing an injection bump (plus improved synchronization between different modules \rightarrow 30 ns gain in jitter).

Measured waveform and residual oscillations for:

- > 150 ns spaced ion bunches \rightarrow ~ 6 mm (need transverse damper!)
- ➢ 225 ns spaced proton bunches → 1.5-2 mm

Possible reduce rise time from 250 ns to 150-175 ns with present system? Beam quality: emittance growth and tails population?

Idea: use only the fast MKP-S (49 kV) and reduce the required kick by introducing an injection bump (plus improved synchronization between different modules \rightarrow 30 ns gain in jitter).

Measured waveform and residual oscillations for:

- > 150 ns spaced ion bunches \rightarrow ~ 6 mm (need transverse damper!)
- ➢ 225 ns spaced proton bunches → 1.5-2 mm

No measurable emittance growth was observed after adjusting the synchronization between the modules.

Tail population was calculated as a function of the MKP residual kick

Device	Comment	Material
TIDVG	Sweep, intensity limitation not brightness. Continuous dumping problematic	Sandwich: Graphite, Al,Cu, W
TIDH	Sweep. Dump at 28 GeV	Al
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel
TED LHC	450 GeV. Continuous dumping problematic. Graphite not in vacuum	Sandwich: Graphite, Al, Cu-Be, Cu
TED HiRadMat	450 GeV	
TBSE	450 GeV. Should survive one shot	
Scraper		Graphite
TIDP	Momentum collimator. n/a	
TPSG	450 GeV: Assume all beam in one spot	Sandwich: graphite <-> CfC, Ti, Inconel
TCDIs	450 GeV.	

SPS internal dumps

Device	Comment	Material
TIDVG	Sweep, intensity limitation not brightness. Continuous dumping problematic	Sandwich: Graphite, Al,Cu, W
TIDH	Sweep. Dump at 28 GeV	Al
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel
TED LHC	450 GeV. Continuous dumping problematic. Graphite not in vacuum	Sandwich: Graphite, Al, Cu-Be, Cu
TED HiRadMat	450 GeV	
TBSE	450 GeV. Should survive one shot	
Scraper		Graphite
TIDP	Momentum collimator. n/a	
TPSG	450 GeV: Assume all beam in one spot	Sandwich: graphite <-> CfC, Ti, Inconel
TCDIs	450 GeV.	

Device	Comment	Material
TIDVG	Sweep, intensity limitation not brightness. Continuous dumping problematic	Sandwich: Graphite, Al,Cu, W
TIDH	Sweep. Dump at 28 GeV	Al
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel
TED LHC	450 GeV. Continuous dumping problematic. Graphite not in vacuum	Sandwich: Graphite, Al, Cu-Be, Cu
TED HiRadMat	450 GeV	
TBSE	450 GeV. Should survive one shot	
Scraper		Graphite
TIDP	Momentum collimator. n/a	
TPSG	450 GeV: Assume all beam in one spot	Sandwich: graphite <-> CfC, Ti, Inconel
TCDIs	450 GeV.	

SPS betatron and momentum (TIDP) scrapers

Device	Comment	Material
TIDVG	Sweep, intensity limitation not brightness. Continuous dumping problematic	Sandwich: Graphite, Al,Cu, W
TIDH	Sweep. Dump at 28 GeV	Al
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel
TED LHC	450 GeV. Continuous dumping problematic. Graphite not in vacuum	Sandwich: Graphite, Al, Cu-Be, Cu
TED HiRadMat	450 GeV	
TBSE	450 GeV. Should survive one shot	
Scraper		Graphite
TIDP	Momentum collimator. n/a	
TPSG	450 GeV: Assume all beam in one spot	Sandwich: graphite <-> CfC, Ti, Inconel
TCDIs	450 GeV.	

SPS protection elements (TPSG)

 7.5σ

Device	Comment	Material
TIDVG	Sweep, intensity limitation not brightness. Continuous dumping problematic	Sandwich: Graphite, Al,Cu, W
TIDH	Sweep. Dump at 28 GeV	AI
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel
TED LHC	450 GeV. Continuous dumping problematic. Graphite not in vacuum	Sandwich: Graphite, Al, Cu-Be, Cu
TED HiRadMat	450 GeV	
TBSE	450 GeV. Should survive one shot	
Scraper		Graphite
TIDP	Momentum collimator. n/a	
TPSG	450 GeV: Assume all beam in one spot	Sandwich: graphite <-> CfC, Ti, Inconel
TCDIs	450 GeV.	

Dealing with high power beams!

Intensity	# protons	Comment
А	1.2e12	No effect
В	2.4e12	Decolouration
С	4.8e12	Melting
D	7.2e12	Fragment ejections

Goal:

- Intercepting devices surviving
- Downstream elements protected
- Minimize activation (ALARA)

Nominal LHC: 288x1.15e11= 3.3e13

Device	Comment	Material	Upgrade for LIU
TIDVG	Sweep, intensity limitation not brightness. Continuous dumping problematic	Sandwich: Graphite, Al,Cu, W	YES. LSS5 internal dump
TIDH	Sweep. Dump at 28 GeV	AI	ок
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel	OK, SPS 2 PS injection inhibit required
TED LHC	450 GeV. Continuous dumping problematic. Graphite not in vacuum	Sandwich: Graphite, Al, Cu-Be, Cu	NO, intensity interlocking upgrade
TED HiRadMat	450 GeV		TBD
TBSE	450 GeV. Should survive one shot		NO
Scraper		Graphite	OK, need fast BLMs
TIDP	Momentum collimator. n/a		n/a
TPSG	450 GeV: Assume all beam in one spot	Sandwich: graphite <-> CfC, Ti, Inconel	YES, material choice being finalized
TCDIs	450 GeV.		YES (HiRadMat, masks)

SPS Dump Upgrade

- Option of having a dedicated external system (for ALL SPS beams: all energies and including Fixed Target FT beams) with a dump block in a separated shielded cavern was investigated.
- LSS5 proposed for the extraction channel
- Unsuitable because:
 - Low energy beams (< 200 GeV) do not match aperture requirements at the extraction elements</p>
 - The remaining part of FT beams, after slow extraction, is too large for the current extraction channels
 - > Very big civil engineering footprint, very difficult for LS2 and extremely expensive

SPS Dump Upgrade

- Keep internal dump option but move it to LSS5 (reduce activation in LSS1 where now also injection system is hosted)
- Remove TIDH
- ➤ Upgrade extraction kickers (MKDV) system → dump all energies including FT residual beam
- Upgrade TIDVG design (6 m instead of 4 m long, different materials and shielding)

TCDIs Upgrade

Attenuation factor:

Full SPS BCMS batch needs to be attenuated by x70 to avoid damage of downstream equipment \rightarrow longer TCDIs (1.2 m \rightarrow 2.1 m graphite or 3D C-C)

Robustness: strong dependence on beam size at collimators \rightarrow some TCDIs relocated and optics modified (additional power converters) to increase beam size ($\beta_x \times \beta_y > 3600 \text{ m}^2$)

E. Gianfelice Wendt

TCDI	s [m]	β _x [m]	β _y [m]	Δμ [°]
TCDIH.NEW1	2509.0	65.5	81.3	0.0
TCDIH.87904	2547.3	34.7	261.8	60.6
TCDIH.88121	2623.1	74.4	195.7	57.7
TCDIV.NEW1	2440.9	173.0	28.1	0.0
TCDIV.NEW2	2488.7	86.9	42.1	60.0
TCDIV.88123	2620.5	70.6	210.1	59.3

- HB 2016

TCDIs Upgrade

Attenuation factor:

Full SPS BCMS batch needs to be attenuated by x70 to avoid damage of downstream equipment \rightarrow longer TCDIs (1.2 m \rightarrow 2.1 m active length)

Robustness: strong dependence on beam size at collimators \rightarrow some TCDIs relocated and optics modified (additional power converters) to increase beam size ($\beta_x \times \beta_y > 3600 \text{ m}^2$)

Conclusions

- The HL-LHC nominal and ultimate luminosity goals require an important upgrade of the full chain of injectors (several talks presented at this workshop on different topics)
- PSB and PS injection systems and TL have to be upgraded to handle higher intensity beams (160 MeV and 2 GeV respectively) → mitigate space charge
- The SPS injection system has to be modified to increase the current of ions
- Intercepting devices in the SPS and TLs have to withstand high energy densities and protect the downstream equipment → HW upgrade and improved interlock logic

Thank you for your attention!