

Injection Painting Improvements in the J-PARC RCS

J-PARC/JAEA

Shinichi Kato for RCS beam commissioning team

<u>Contents</u>

- 1. Introduction
- 2. Control of the magnet power supply
- 3. Measurement of the footprint of the Painting Process
- 4. Adjustment of the Painting Area
- 5. Summary

J-PARC 3GeV RCS

To storage lots of particles...

Multi-turn H⁻ stripping injection Injection Painting

Horizontal Painting scheme

Horizontal Painting scheme

Horizontal Painting scheme

Tuning process of injection painting

1. Derivation of the initial PB current

Using...

- Online simulation model
- Measured beam parameter

For arbitrary painting area size (ex. 200 π mm mrad, 150 π , 100 π ...)

X' Fixed bump height by SBs : 93 mm Xinit Circulating beam ellipse at the end of injection period

The <u>injection beam coordinate</u> is determined to match the painting area at the end of injection period.

2. Control of the PB current

3. <u>Measurement of the footprint of the painting process</u> (and painting area)

Tuning process of injection painting

1. Derivation of the initial PB current

Using...

- Online simulation model
- Measured beam parameter

For arbitrary painting area size (ex. 200 π mm mrad, 150 π , 100 π ...)

X' Fixed bump height by SBs : 93 mm Xinit Circulating beam ellipse at the end of injection period

The <u>injection beam coordinate</u> is determined to match the painting area at the end of injection period.

2. Control of the PB current

3. Measurement of the footprint of the painting process

and painting area)

Tuning process of injection painting

1. Derivation of the initial PB current

Using...

- Online simulation model
- Measured beam parameter

(ex. 200 π mm mrad, 150 π , 100 π ...) The <u>injection beam coordinate</u> is determined to match the painting area at the end of injection period. same with... The **Initial bump orbit (x_{init}, x'_{init})**.

By model fitting...

For arbitrary painting area size

Initial kick angles of PBs

By converting kick angle to current...

We can get Initial output current of PBs

2. <u>Control of the PB current</u>

3. <u>Measurement of the footprint of the painting process</u> (and painting area)

Improved processes in this time

1. Derivation of the initial PB current

2. Control of the PB current

It was required to distribute the injection beam

in the **determined area** following the **radial direction correctly**.

To reduce the **COD** excited by the error current (unbalance of PBs output).

To form **various current patterns** such as the combined time decay function.

...because the RCS should switch the transverse painting size between **MLF** and **MR** pulse-by-pulse.

3. <u>Measurement of the footprint of the painting process</u> (and painting area)

Improved processes in this time

1. Derivation of the initial PB current

2. Control of the PB current

It was required to distribute the injection beam

in the **determined area** following the **radial direction correctly**.

To reduce the **COD** excited by the error current (unbalance of PBs output).

To form **various current patterns** such as the combined time decay function. ...because the RCS should switch the transverse painting size between **MLF** and **MR** pulse-by-pulse.

3. <u>Measurement of the footprint of the painting process</u> (and painting area)

It was required to confirm

whether the **painted area size** and the **footprint** of the painting process was correct or not.

In particular...

The footprint was only measured with 100 μ s step (6 points)

because of constraints of the beam tuning time.

It was required to **measure the footprint continuously**.

We improved these processes to perform **efficiently** with **high accuracy**.

We achieved the precise adjustment of the painting area.

2. Control of the magnet power supply

Power supply of PB

Basic construction is...

Two quadrant chopper circuit

Output **current** and **voltage** depend on IGBT open/close time

To generate IGBT control signal...

Set Current Waveform (feedback signal)

This corresponds to **target current pattern**.

Output follows by the automatic angalog feedback.

 \rightarrow The time delay is approximately 20 $\mu s.$

Power supply of PB

Basic construction is...

Two quadrant chopper circuit

Output **current** and **voltage** depend on IGBT open/close time

To generate IGBT control signal...

Set Current Waveform (feedback signal)

This corresponds to target current pattern.

Output follows by the automatic angalog feedback.

 \rightarrow The time delay is approximately 20 $\mu s.$

Set Voltage Waveform (feedforward signal)

This value corresponds to IGBT open/close time. \rightarrow target voltage pattern

In the output adjustment...

We should optimize this **Set Voltage**.

Issues of the previous adjustment

Large tracking error (Output current deviation from Set Current)

The tracking error was more than ± 100 A

by the manual optimization of the set voltage.

Over 4 mm COD occurred during injection by the unbalance of 4 PBs.

Long adjustment time

In the previous adjustment...

Adjustment time of output current was 1 hour for each power supply.

(4 horizontal + 2 vertical) → Over 6 hours for one painting area

We developed the accurate and quick adjustment technique.

Response measurement

For accurate & quick adjustment...

The output current response to the **<u>Set Voltage</u>** was measured in detail.

Response measurement

For accurate & quick adjustment...

The output current response to the **<u>Set Voltage</u>** was measured in detail.

<u>Adjustment Result</u>

By the automatic adjustment tool...

Adjustment time : 1 hour \Rightarrow 20 minutes for each power supply

Tracking error : > $\pm 100 \text{ A} \Rightarrow \underline{< \pm 50 \text{ A}}$

3. Measurement of the footprint of the Painting process

To obtain the footprint of the painting process on the phase-space...

Measurement method was developed

using COD measurement & Online simulation model fitting

COD measurement during injection period

Waveform signal of BPMs (having 4 electrodes) are analyzed.

By using Fourier Transform (FT)...

Amplitudes at the revolution frequency are obtained for each electrodes.

From the balance of these amplitudes...

⇒ Beam position can be obtained.

 Injection Timing was shifted just before normal timing to complete injection until t = 0.

• Shorter Fourier Transform width was chosen (typical : 100 μs).

• Waveform was analyzed with 1 μ s step continuously.

We could obtain the 500 points **COD** from t=0 to 500 µs continuously.

Online simulation model fitting & Painting area measurement

For the COD, **Model Fitting** is performed.

By using the difference of COD between **with/without** PB...

Only 4-kick angles of 4-PBs are required as the free parameters.

Online simulation model fitting & Painting area measurement

For the COD, **Model Fitting** is performed.

By using the difference of COD between **with/without** PB...

Only 4-kick angles of 4-PBs are required as the free parameters.

Online simulation model fitting & Painting area measurement

For the COD, Model Fitting is performed.

By using the difference of COD between **with/without** PB...

Only 4-kick angles of 4-PBs are required as the free parameters.

Online simulation model fitting & Painting area measurement

4. Adjustment of the Painting Area

First adjustment result & correction

Measurement result of the painting area The moving distance of the injection beam

was insufficient.

This result is equivalent to...

The initial <u>bump orbit height (magnetic field)</u>

was insufficient.

The footprint was also different from the target.

The cause was the difference

between the **current monitor value** and the **output field** due to the **response lag** of the current monitor circuit.

First adjustment result & correction

Measurement result of the painting area The moving distance of the injection beam

was **insufficient**.

This result is equivalent to...

The initial <u>bump orbit height (magnetic field)</u> was insufficient.

The footprint was also different from the target.

The cause was the difference between the **current monitor value** and the **output field** due to the **response lag** of the current monitor circuit.

To correct the insufficiency of the PB output... We **regenerated** the <u>new Set Current</u> by adding the analysed shortage current and **readjusted** the output current.

This is like the feedback based on the measured result.

This correction could be performed

by the **precise control of current** and the **measurement of footprint** (kick angle & bump height).

Adjustment Result

The moving distance (bump height) was **enough improved** by only one correction.

The footprint followed the radial direction more accurate.

The output **balance** between PBs was improved and COD could be reduced to approximately $\pm 1 \text{ mm}$.

We achieved the precise adjustment of the painting

Adjustment Result (2)

4.0

For combined time decay function...

We also achieved

the precise adjustment of the painting.

Pulse-by-pulse switching

of the transverse painting size between MLF and MR has been operated successfully.

[mrad] 2.0 × 50 π mm mrad 0 Measurement Target -2.0 -4.0 -20 -10 10 20 0 x [mm]

5. Summary

We established the control of injection painting with high accuracy.

In particular, we developed...

Control of PB current

By the response measurement & developing the automatic tool,

Adjustment time : **1/3** (20 minutes) Tracking error : **1/2** comparing with previous one

Measurement of the footprint of painting process

It became possible to obtain the painting process **continuously**.

After that... Adjustment of the Painting Area

We could distribute the injection beam on the **target paint area correctly**. The output balance of the PBs was improved.

It became possible additionally

to make the various time function of painting flexibly for control of the beam distribution and density.

Our results lead to the experimental study of the space-charge effect.