Numerical modeling of fast beam ion instabilities

L. Mether, G. Iadarola, G. Rumolo

HB2016, 3-8 July, Malmö

Outline

Introduction

- Simulation outline and tool development
- > Application to CLIC main damping ring
- Simulation challenges and prospects
- Summary & outlook

Fast beam ion instability

> For bunch train followed by large gap, ions build up during one train passage

- Fast beam ion instability (FBII)
- E-cloud-like instability
 - $\,\circ\,$ Ion density increases for every bunch passage $\,\rightarrow\,$ effect strongest at tail of train

Observations

- > Observed in several machines under vacuum degradation
- Measurements at CESR-TA (Apr 2014)
 - Varying ion species, pressure, bunch charge, train structure, feedback etc.

Theory

- Based on linear approximation of Bassetti-Erskine formula
- > Dynamics essentially depend on beam brightness
 - $\circ~$ Velocity kick for ion with mass number A

$$k_{x,y}(x,y) = \frac{2N_b r_p c}{A} \frac{x,y}{\left(\sigma_x + \sigma_y\right)\sigma_{x,y}}$$

- A = ion mass number, N_b = bunch intensity, r_p = classical proton radius
- Trapping condition

$$A > A_{\text{trap}} = \frac{N_b r_p T_b c}{2 \left(\sigma_x + \sigma_y\right) \sigma_{x,y}}$$

• T_b = bunch spacing

Fast beam-ion instability. I. Linear theory and simulations Raubenheimer *et al.* Phys. Rev. E 52, 5, 5487

CLIC accelerator complex

Simulation studies

- > Aim to estimate vacuum (and/or feedback) requirements imposed by FBII
- Simulated with strong-strong 2D macroparticle multi-bunch tracking code

> FASTION

- Developed and used for studies of FBII in linear CLIC structures
- Based on HEADTAIL for e-cloud
- Development required to adapt to damping rings
- Several CERN beam dynamics codes re-designed recently
 - Electron cloud build-up: ECLOUD → PyECLOUD
 - Collective effects: HEADTAIL → PyHEADTAIL
 - o Aim to make codes more maintainable, flexible and user friendly
- Decision to incorporate FASTION functionality into PyECLOUD PyHEADTAIL

coupled

> The machine lattice is divided into a number of interaction points (IP)

- An electron bunch train is tracked through the lattice
- In every IP, the beam-ion interaction is simulated

> In every interaction point, the beam is passed bunch by bunch

> In every interaction point, the beam is passed bunch by bunch

Numerical modeling of fast beam ion instabilities L. Mether

> In every interaction point, the beam is passed bunch by bunch

Numerical modeling of fast beam ion instabilities L. Mether

> In every interaction point, the beam is passed bunch by bunch

Numerical modeling of fast beam ion instabilities L. Mether

Implementation in PyECLOUD and PyHEADTAIL

L. Mether

06/07/2016

18

Implementation

- Generalization to arbitrary charge and mass in PyECLOUD and PyHEADTAIL
- Extension of PyECLOUD gas ionization routines
 - Multiple ion species, field ionization
- Ion boundary conditions (perfect absorber)
- Modification of PyPIC FFT solver method
 - Rectangular (non-square) grid cells, useful due to the very flat beams
- Single kick interaction
- Implementation of multi-bunch in PyHEADTAIL
 - $\circ~$ Create and track multi-bunch beam, "slice" into bunches for interaction

- Benchmark study I
 - Bunch train initialized identically in FASTION and PyEC-PyHT
 - Machine lattice divided in 677 interaction points ~ 60 cm long
 - Residual gas: water, A = 18
 - o Pressure 20 nTorr
- Track over 1 turn

- Bunch train centroids after 1 turn
- Unstable motion in vertical plane, as expected

- Benchmark study I
 - Bunch train initialized identically in FASTION and PyEC-PyHT
 - Machine lattice divided in 677 0 interaction points ~ 60 cm long
 - Residual gas: water, A = 180
 - Pressure 20 nTorr 0
- Track over 1 turn

- Centroid of last bunch along turn
- Good agreement between FASTION and PyECLOUD-PyHEADTAIL

- Benchmark study II
 - Bunch train initialized with different random seeds in FASTION and PyEC-PyHT
 - Residual gas: water, A = 18, P = 10 nTorr
- > Track over 100 turn, snapshots of train after 1, 10 and 30 turns

- Benchmark study II
 - Bunch train initialized with different random seeds in FASTION and PyEC-PyHT
 - Residual gas: water, A = 18, P = 10 nTorr
- > Track over 100 turn, vertical emittance growth of last bunch

Simulation tool status

- Basic simulation scenario agrees with FASTION
- Ready to test new features available in PyECLOUD and PyHEADTAIL
 - Ion self space charge
 - PIC solvers with boundary for complex beam chamber profiles
 - Dipole and quadrupole magnetic fields on ion motion
 - o Bunch slices
 - Synchrotron motion, chromaticity, transverse feedback

Challenges

Resolution

- Simulating two-stream instabilities generally challenging: big cloud small beam
- Especially for lepton machines, with tiny beams
- For FBII, variations in electric field at slightly different locations inside beam are an important ingredient in exciting the instability
- Simply increasing the number of PIC grid cells quickly leads to unacceptably long execution times, and eventually memory issues

Challenges

Resolution

- Solution: multiple nested grids
- Dual-grid method with fine grid around beam, coarse grid for cloud in FASTION
- Multigrid method, using modular structure, under development in PyPIC
 - Input number target grid size in beam & coarsest grid size \rightarrow N grids
 - Applicable with any solver method / boundary condition in PyPIC

Example

- $\circ~$ Compare single grid vs. multigrid with 3 grids
- Reference from Bassetti-Erskine
- o Similar execution times
- o Circular beam

$$\begin{split} \sigma_x &= 3.30\text{e-}04 \text{ [m]} \\ \sigma_y &= 3.30\text{e-}04 \text{ [m]} \\ \Delta h_{single} &= 3.95\text{e-}04 \text{ [m]} \\ \Delta h_{multi} &= 1.32\text{e-}04 \text{ [m]} \\ \Delta h_{BE} &= 9.89\text{e-}05 \text{ [m]} \end{split}$$

Example

L. Mether

o Electric fields at 1 sigma

06/07/2016

Example

RMS error compared to Bassetti-Erskine

Example

- RMS error map (logarithmic scale)
- o Better resolution around beam in multigrid
- At the expense of slightly lower resolution outside (for similar run times)

Challenges

Run-time performance

- Dynamics of instability proportional to beam brightness
- In damping ring, brightness increases by large factor during damping period
- To capture full dynamics, ideally simulate full damping period
 - CLIC main damping ring, damping time around 2 ms ~ 1400 turns
- FASTION: 1 turn ~ 20 min \rightarrow 20 days for full damping cycle
- PyEC-PyHT: currently ~ 50 % slower
 - Profiling shows is largely due to FFT solver, room for optimization
 - Multigrid may also help
- Too long in both cases!

Effort ongoing to create parallelization layer applicable to ion, e-cloud & other studies

Summary & outlook

- Fast beam ion instability modeling implemented in PyECLOUD PyHEADTAIL
 - First application to CLIC main damping ring
 - Benchmarked against FASTION
 - Ready for systematic studies
- Many new features available
 - Future studies to estimate effect on instability
- Multigrid solver methods have been implemented
 - Essential for good resolution without compromising on performance
 - $\circ~$ First full multigrid simulations with PyEC-PyHT are being run
- Long run times still a problem
 - $\circ~$ Parallelization effort ongoing

Thank you!

Thanks to PyPIC, PyECLOUD and PyHEADTAIL developers: H. Bartosik, E. Belli, S. Hegglin, K.Li, A. Oeftiger, A. Passarelli, A. Romano, M. Schenk

