

High Power Target Instrumentation at J-PARC for Neutron and Muon Sources

Shin-ichiro Meigo¹⁾, Motoki Ooi¹⁾, Kiyomi Ikezaki¹⁾, Tomoyuki Kawasaki¹⁾, Hidetaka Kinoshita¹⁾, Atsushi Akutssu¹⁾, Masaaki Nishikawa¹⁾, Shinpei Fukuta¹⁾ and Hiroshi Fujimori²⁾

1) JAEA/J-PARC, 2) KEK/J-PARC

Outline

Introduction

- Present mercury target status
- R&D of beam instruments for MLF
 - Beam monitor
 - Beam flattening system
 - 2D profile monitor
- Future plans at J-PARC
 Facility for R&D of ADS (TEF)
 2nd target station for MLF

Hadron Experiment Facility

> 30GeV Synchrotron MR (0.75MW)

Barris Coloring and

Neutrino Exp. Facility

(294km to Super KAMIOKANDE)

Materials & Life Science Facility (MLF)

Bird's eye photo

JRR-3M 800m to MLF

3GeV Synchrotron RCS (25Hz,1MW)

Transmutation Facility (TEF) (Phase II)

JFY2007 Beam

JFY2008 Beam

JFY2009 Beam

Linac 400MeV(50mA)

J-PARC = Japan Proton Accelerator Research Complex

Beam transport to MLF

Targets placed at MLF

Muon target

- Carbon graphite (IG430)
- 8% beam lost(80 kW loss)
- Highest intensity in the world

Rotating target

Thick. 2cm Diam. 30 cm

Neutron target

- Mercury
 - Highest pulse intensity in the world

Present status of the mercury target

Efforts to mitigate cavitation damage with gas micro-bubbles

Operational history of JSNS

Water leak events at mercury target

- In April 2015, water leak of mercury target was found during 500 kW beam operation. Coolant water in target shroud soaked out through the defect of the welding.
- On Nov 2015, similar event happened. Water leaked into inner shroud so that we can not find the leaked point (possibly mirror).
- Welding of water channel might be cause of the issue. Since no robust target and no enough space for storage remains, operational beam power is decided as 200-kW.

R&D for high power beam instruments

Beam diagnostics for profile and halo

- Profile monitor and halo monitor (online monitor)
 - Multi Wire Profile Monitors (MWPMs) : SiC wires (15 sets)
 - Stationary MWPM at proton beam window (PBW), separation between vacuum and helium, placed at 1.8 m upstream of the mercury target
- 2D profile: Image of residual dose read out by imaging plate (IP)

IP attached to target by remote handling after beam irradiation

Beam profile at mercury target

MWPM at PBW

Profile result by the IP

Fitted by two Gaussian \bullet Convolution primary protons and secondary particles

Result by MWPM

Dec 24 :

- Fit by Gaussian
- Width and position for each pulse obtained
- Good agreement width result by IP

Proton beam at the target

- Beam operational status
 - Study with 1 MW beam
 - User operation with 0.5MW
- Cavitation damage is critical for high power beam with short pulse
 - Proportional to 4th power of the peak current density at target
 - Useless beam scanning to mitigate damage
 - More serious than SNS due to high energy per pulse (JSNS 40 kJ/shot)
- Although helium bubble injection mitigates the damage, peak reduction is essential.
- Required development of beam flattening system

Pin holes at target of SNS by R. Bernie

Target vessel

Beam flattening system

Principle: Beam edge folded by non-linear optics

Linear

Real space (Horizontal)

Non-linear

Position

Position

Intensity

Octupole magnet: 800 T/m³

Beam tuning tool with SAD code

T=R⁻¹M

Fitted parameter

MW

Fit by observed width and extrapolate to target

OPTICS	Elipse	RMS sigma	Quad	Orbit	STR and B	Tracking	Solenoi	de cor	Q fittin
Twiss Optics									
Ret Sent/Dete(m)						Diata			
Plot Sqrt(Beta[m])						Replot sigma		a	
Plot Beta[m]			_		Boost Pla		<u> </u>		
leta Rang	je [m]:				100.0				
Sigma Range [mm]					40.000	Octupole -			
🖉 Default						Fixed value			
> Subst	ana Disp					EPSX for (OCT	10	000
 Fit transfer Matrix with Error Fit transfer Matrix with MUDIA width Error 				mor		EPSY for OCT		10.	000
> rit trat	ister mau	Compose mar		TOP		Bx at OCT	2		000
		compare mea	asure			By at OCT	1		000
		Fit Measured	Width			Accept X a	t QNQ1		000
st Fit ru	n60/oct2	4/90_100_for_	wMTG	woMT	G_stat2	Accept Y at QC12			000
EmitX(RMS):				5.026E-6	⁵ Phase Dx[pi]			000	
βx at start:				18.947	Phase Dy[pi]			000	
0(x at start:				-1.670	Meot H Coef			000	
EmitY(RMS):				7.642E-6	Yuri H Coef			000	
By at start:				8.080	Meot V Coef			000	
αy at start:				.774	Yuri V Coef			000	
dp/p [%]:					.191	Meot OCT1[T/m3]			000
Peak dens for 1 MW[J/cc/pulse]:					14.815	Meot OCT2[T/m3]			000
Expansion ratio NTG/PBW:					1.307	Yuri OCT1[T/m3]			000
Sig H[mm] at NTG:					33.344	344 Yuri OCT2[T/m3]			000
ag vimmj	at NIG:				17.578	Inter OCT1	[T/m3]		000
na Fit	01.			_		Inter OCT2	[T/m3]		000
EmitX(RMS):				.000	Meot OCT1[A]			000	
v at star	t. •-				000	Meot OCT2[A]			000
UX at start:				000	Yuri OCT1[A]			000	
By at start				000	Yuri OCT2[A]			000	
(Y at start:				.000	Inter OCT1[A]			000	
dp/p [%]:				.000	Inter OCT2[A]			000	
Peak dens for 1 MW[J/cc/pulse]:				.000	Calc OCT and Accept				
Expansion ratio NTG/PBW:					.000	Initilize to K0			
Sig H[mm] at NTG:				[.000				
Sig V[mm] at NTG:					000				

OCT tuning

Horizontal Vertical 2nd Horizontal 2nd Vertical 3rd Horizontal 3rd Vertical

Beam profile can be estimated by tracking

Obtained beam profile

- Flat beam was obtained and lower intensity of halo was observed
- Good agreement of calculation even for with muon target
- Peak smaller by 14 % and 20 % at horizontal and vertical. Overall 30~40 % reduced.

Beam profile at neutron target (calculation)

Ideal shape obtained

Beam loss status

Beam loss was quantitatively observed by mean of activation obtained by dosimeter for 500 kW.

- No significant beam loss aroused due to non-linear optics.
- To decrease the beam loss at hands on maintenance area (M1) with obtaining more flat shape, star shaped duct following Q mag with large aperture is installing at the present.

Demonstration ~1 MW beam operation

- Demonstrated 0.8 MW (0.9 MWeq) for short duration (70 s x 7times) due to outgas release from foil at RCS for charge exchange
- Radiation dose at target station showed as same as 0.5 MW beam

Beam profile

- Anti-correlated painting makes flat shape
- 30 % of peak reduction (11 J/cc/pulse) achievable for 1MW beam operation

Beam power (MW)	25Hz equiv. power (MWeq)	Allowable RF rep. (Hz)	RCS inject. paint	Area of paint (π mm mrad)
0.5	0.52 (SX)	25	Anti	150
0.8	0.86 (FX)	25	Cor	100
0.94	1.0 (FX)	0.16	Cor	100

Development new profile monitor

A new profile monitor required to continuously observe 2D profile withstanding high power beam

Fujikura Fiber

0 Gy 1 MGy 2 MGy

- Rad hard fiber scope (Fujikura FIGR-20, 20000 pixels) coupled with near-IR filter
- Applicable for high temperature target (for ADS target)
- Developing luminescent type

980 °C

1300 °C

Proton beam window lifetime

Stress [MPa]

- To predict lifetime of the PBW with high accuracy, precious validation of calculation code for nuclear reaction is necessary.
- Production cross section measurement was carried out.

Result at SINQ/PSI for 0.6GeV Y. Dai, et al, J. Nucl Mat. 343 184 (2005)

Strain (%)

Future plans at J-PARC

2nd target station for MLF

New facility at J-PARC for R&D of ADS

TEF-T: Lead Bismuth (Pb-Bi) target test facility

- H⁻ beam, 25Hz, 400 MeV, 250 kW
- Multi purpose use: High energy neutron beam line and ISOL
- TEF-P: Subcritical assembly (Minor actinide, Am, Np)
 - H⁺ beam, 25Hz, 400 MeV, 10 W
 - Laser charge exchange(LCE) developing

R&D of Laser Charge Exchanger(LCE)

- LCE was examined at RFQ teststand using 3MeV H⁻ beam was conducted last week.
- Demonstrated 5 W equivalent power of beam for TEF-P (0.4 GeV, 25 Hz, peak I=50mA) extraction.

Summary

- To mitigate cavitation damage on the mercury target vessel, beam flattening system has been developed. Peak intensity will be reduced by ~30 % of linear optics.
- Present beam operation had started with power of 0.5 MW. After installation of revised mercury target at the welding, the power will be ramped up the beam power to 1 MW.
- For R&D of ADS, TEF facility hopefully will start in a few years.

Thank you for your attention

Be patient for development of the target and instruments

