Model Benchmark with Experiment at SNS Linac

Andrei Shishlo,
SNS, ORNL, USA
July 6, 2016

HB2016, Malmö, Sweden
Outline

- SNS Accelerator and SNS Superconducting Linac
- SCL Transverse Matching Problem
- Linac Models
- Transverse Twiss Parameters Measurements
- SCL RF Tuning Technics
- Longitudinal Twiss Parameters Measurements
- Final results
- Conclusions
SNS Accelerator Complex

Front-End:
Produce a 1-msec long, chopped, H⁻ beam

1 GeV LINAC

Accumulator Ring:
Compress 1 msec long pulse to 700 nsec

<table>
<thead>
<tr>
<th>Design parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic Energy [GeV]</td>
<td>1.0</td>
</tr>
<tr>
<td>Beam Power [MW]</td>
<td>1.4</td>
</tr>
<tr>
<td>Repetition Rate [Hz]</td>
<td>60</td>
</tr>
<tr>
<td>Peak Linac Current [mA]</td>
<td>38</td>
</tr>
<tr>
<td>Linac pulse length [msec]</td>
<td>1.0</td>
</tr>
<tr>
<td>SRF Cavities</td>
<td>81</td>
</tr>
</tbody>
</table>

Liquid Hg Target
SNS Superconducting Linac (SCL)

SNS SCL:
- 81 SC cavities
- Each cavity has its own klystron
- Each cavity tuned independently
- 23 cryomodules
- Doublet quads after each module

SCL Diagnostics:
- All diagnostics are non-intercepting
- Beam Position Monitors (BPM) after each module
- BPMs measure:
 - transverse position of the beam center
 - Longitudinal phase (arrival time)
 - Fourier amplitude of the sum signal from 4 electrodes
- Laser Wire stations to measure transverse profiles of the beam

9 SCL Laser Wire Profile Monitors
“Figure 7 shows one of the general cases: fit beam size for the first 4 laser wires with the online model, and then compare model prediction against measurement at the 5th wire – they do not agree at all.”

EXPERIENCE AND LESSONS WITH THE SNS SUPERCONDUCTING LINAC

Yan Zhang, Proceedings of IPAC’10, Kyoto, Japan, pp 26-30

- Never could get LW data in agreement with the models including Impact code
- Multiple quads settings data do not agree for LW 1-4
SNS SCL: Linac Models

- We benchmarked several available computer codes (Parmila, Impact, Track, Trace3D, XAL Online Model).
- We concluded that the problem is not in the codes.
- Possible reasons: bad optics, unknown RF settings and longitudinal Twiss at the beginning of SCL.

XAL Online Model is an envelop tracking code.
Initial Transverse Twiss Parameters
Measurements of Initial Twiss – LSQM

Let’s assume we have n Wire Scanners

\[
x_1 = m^{(1)}_{1,1} \cdot x_0 + m^{(1)}_{1,2} \cdot x'_0
\]

\[
\langle x_1^2 \rangle = \left(m^{(1)}_{1,1} \right)^2 \langle x_0^2 \rangle + 2 \cdot m^{(1)}_{1,1} m^{(1)}_{1,2} \cdot \langle x_0 x'_0 \rangle + \left(m^{(1)}_{1,2} \right)^2 \langle (x'_0)^2 \rangle
\]

\[
M = \begin{pmatrix}
\left(m^{(1)}_{1,1} \right)^2 & 2 \cdot m^{(1)}_{1,1} m^{(1)}_{1,2} & \left(m^{(1)}_{1,2} \right)^2 \\
\left(m^{(2)}_{1,1} \right)^2 & 2 \cdot m^{(2)}_{1,1} m^{(2)}_{1,2} & \left(m^{(2)}_{1,2} \right)^2 \\
\vdots & \vdots & \vdots \\
\left(m^{(n)}_{1,1} \right)^2 & 2 \cdot m^{(n)}_{1,1} m^{(n)}_{1,2} & \left(m^{(n)}_{1,2} \right)^2 \\
\end{pmatrix};
\]

\[
\begin{pmatrix}
\langle x_0^2 \rangle \\
\langle x_0 \cdot x'_0 \rangle \\
\langle (x'_0)^2 \rangle
\end{pmatrix} = \left(M^T \cdot W \cdot M \right)^{-1} \cdot M^T \cdot W \cdot
\begin{pmatrix}
\langle x_1^2 \rangle \\
\langle x_2^2 \rangle \\
\vdots \\
\langle x_n^2 \rangle
\end{pmatrix}
\]

(1)

\[
W_{i,i} = \frac{1}{\text{cov}(\langle x_i^2 \rangle)} \quad \text{Weights of each individual beam size measurement}
\]

“Rule of thumb” – 90° / (n-1) betatron phase advance between “WS stations”

We violated it!

\[
\varepsilon_{\text{rms}} = \sqrt{\langle x_0^2 \rangle \cdot \langle (x'_0)^2 \rangle - \langle x_0 \cdot x'_0 \rangle^2}
\]

\[
\alpha = -\frac{\langle x_0 \cdot x'_0 \rangle}{\varepsilon_{\text{rms}}} \quad \beta = \frac{\langle x_0^2 \rangle}{\varepsilon_{\text{rms}}}
\]

Initial Twiss!
No RF, No Space Charge Case LW 1-4

- One initial Twiss for all 9 cases (different quad settings)
- For Twiss calculations were used only three “green dots” measurements
- The lines are the model results, and the agreement is good for all cases

Now we know how to handle the optics.
Laser Wire Profile Stations are working correctly!
SCL RF Parameters: Amplitudes and Phases of Cavities
SCL RF Setup Algorithms

- Phase Scan of each SCL Cavity by using TOF with two BPMs
- Always have almost “sin”-like curve and set synchronous phase
- No model needed on this stage

- Send beam into the ring and measure the energy
- Perform BPMs’ timing calibration using known energy
- Translate BPMs’ calibration to the beginning of SCL linac
- No model needed on this stage

- Analysis of all data for each cavity using the Online Model
- After analysis we have amplitudes and phases of all RF in OM
- Model is initialized

- Algorithm has been automated: takes about 40 min for SNS SCL
- We can perform “non-destructive” scans to figure out what we have after beam loss tuning
SCL RF Cavity Phase Setup - Errors

We do not need time-calibrated BPMs!

\[\delta\varphi_{\text{min}} \approx \frac{1}{\sqrt{N}} \frac{\delta\varphi_{\text{BPM}}}{A_\varphi} \]

\[A_\varphi \approx \Delta z_{\text{BPM}} \cdot \frac{1}{(\gamma \cdot \beta)^3} \cdot E_0 TL \]

Conclusions
- Two neighbor BPMs – worst case
- More energy – less accurate the RF phase
- Smaller step – 1/square effective

We want to use BPMs as far as possible!

Less steps (N) – faster the scan!
A “Big Phase Step” Problem

- BPMs measure phase in -180^0 to $+180^0$ range
- To get sinusoidal curve we have to unwrap the phase scan
- Usually, we do this by using the previous phase point of the scan
- Therefore we have to use small steps to avoid more than 180^0 gain in one step
- If we use far away BPM pairs, it could be a problem for the “big phase step”

$$A_\phi \cdot \sin(\Delta \phi_{RF}) < 180^0$$

An example of Cav01a scan. We cannot go further BPM07 with the step size 20^0
Solution for the “Big Step” Problem

Most simple – iterative approach – the unwrapping is done by using not only the previous point, but also the previous and current points from the previous BPM. The iteration starts with the BPM closest to the cavity.

\[
(A^{(k)}_\varphi - A^{(k-1)}_\varphi) \cdot \sin(\Delta \phi_{RF}) < 180^0
\]

Phase step size can be 40\(^0\), 60\(^0\) or may be even 90\(^0\).
It means 10-15 minutes scan for the whole SCL.
In reality, we limit ourselves by 30-40 mins.

BPM15 after iterative unwrapping.
After using the SNS ring for BPMs’ calibration we know the energy for each phase point of each cavity.

We fit the measured kinetic energy vs. cavity phase by using the input energy, the cavity amplitude, and the cavity phase offset.

We use XAL Online Model.

The input energy for one cavity is not the output energy of the previous one. The difference shows the model imperfections.
We thought that we had -180,

That what we really had

Beam loss for this tune is good!
Initial Longitudinal Twiss Parameters
BPM as WS in Longitudinal Direction

\[\lambda(z) = q \cdot N \cdot \frac{1}{\sqrt{2\pi\sigma_z^2}} \cdot \exp \left(-\frac{z^2}{2 \cdot \sigma_z^2} \right) \]

Gaussian Longitudinal Distribution

SNS BPMs report the amplitude of Fourier transformation of the electrode sum signal

\[U_{BPM}(\sigma_\phi) = A_0 \cdot \exp \left(-2 \cdot \pi^2 \cdot \left(\frac{\sigma_\phi}{360^0} \right)^2 \right) \]

\[\sigma_\phi \] - Longitudinal RMS bunch size in deg.

\[\sigma_\phi = \frac{360^0}{\sqrt{2 \cdot \pi}} \sqrt{\ln \left(\frac{A_0}{U_{BPM}} \right)} \]

BPMs give RMS size only. No profiles are available.

(Formulas assume a constant energy. For details see the paper)
The Free Debunching Case

CCL4 → BPM1 → BPM2 → … → BPM{n}

All SCL RF are OFF
Statistics:
40 measurements
13 BPMs

Errors are too big!

SCL BPMs' Amplitudes for All RF Cavities Off
35 mA

Init Twiss (XAL units):
\[\alpha = -0.539 \pm 1.6 \]
\[\beta = 9.138 \pm 24.0 \]
\[\varepsilon = (0.857 \pm 4.9) \times 10^{-6} \]
"Z" Twiss Analysis with SCL RF

We can include a controllable element in the lattice and get more data. The Twiss errors should be reduced. For 5 deg step, matrix will be (72x14)x3.

Results (XAL units):
Alpha = 0.56 ± 0.02
Beta = 5.33 ± 0.13
Emitt = (0.928 ± 0.012)×10^{-6}

Results of “Z” Twiss Analysis 2014

Beam un-matched longitudinally
Agreement Model/Measurements is good.
Integrated SNS SCL Optics
OpenXAL Application
The application includes:

- **Transverse LW data acquisition and analysis**
- **SCL RF phase scans and analysis**
- **Longitudinal Twiss analysis**
- **Based on OpenXAL Online Model**
Successful SCL Optics Control

Now we can reproduce RMS sizes along the whole SCL

2015.11.15
Problem Non Gaussian Profiles

- Some LW profiles demonstrate big “shoulders”
- We can try to do transverse matching, but results may be different from expectations
- May be we need to check Warm linac settings and use multi-particle PIC code for optics planning
Summary

• A good agreement between the model and measured transverse RMS sizes has been achieved by
 – Correct handling of the errors and measurements planning
 – Correct measurements of the RF system parameters
 – Using the correct input longitudinal Twiss parameters

• It took some time (about 3 years) and persistence

• We are ready to try matching in the SNS SCL again
Thanks!