

Beam Halo Collimation Over Wide Range Charge-to-Mass Ratio

I. Strašík and O. Boine-Frankenheim

Accelerator Physics Department, GSI Darmstadt, Germany

Introduction

- FAIR Facility for Antiproton and Ion Research at GSI
- Synchrotron SIS100 (fixed target)
 - Lattice
 - circumference ~ 1.1 km
 - hexagonal shape (six superperiods)
 - quadrupole doublet structure (superconducting)
 - Beams
 - proton (antiproton production)
 - fully stripped ions (e.g.: $^{238}_{92}U^{92+}$, $^{40}_{18}Ar^{18+}$)
 - partially stripped ions (e.g.: $^{238}_{92}U^{28+},\ ^{40}_{18}Ar^{10+}$)
 - Reference beams parameters

$$B\rho$$
 = 18 - 100 Tm

eters		
Beam	Energy range	Beam intensity / cycle
protons	4 - 29 GeV	2×10 ¹³
$^{238}_{92}$ U ⁹²⁺	1.3 – 10 GeV/u	1.5×10 ¹⁰
²³⁸ ₉₂ U ²⁸⁺	0.2 – 2.7 GeV/u	4×10 ¹¹

Two stage collimation system

- Intended for proton and fully stripped ion collimation in SIS100
- Primary collimator (thin foil) scattering of the halo particles
- Secondary collimators (bulky blocks) absorption of the scattered particles

[Ref] J.B. Jeanneret, Phys. Rev. ST Accel. Beams 1, 081001 (1998). [Ref] M. Seidel, DESY Report (Dissertation), 94-103, (1994).

Very robust concept applied in many machines
 Singlepass and multipass collimation efficiency

Parameters of the collimation system in SIS100

primary collimator 1. secondary collimator beam direction 2. secondary collimator

rectangular aperture

Halo collimation system

Collimator stage	primary collimator	secondary collimators
Material	tungsten	tungsten
Thickness	1 mm	40 cm
Transverse position	~ 4.5 σ	~ 5 σ

Cryocollimators

- Combined collimation and pumping system, in total 60 cryocollimators in SIS100
- Interaction of the partially stripped ions with residual gas, $U^{28+} \rightarrow U^{29+}$
- Minimize desorption of the molecules and prevent vacuum degradation

[Ref] L. Bozyk et al., IPAC'12, USA

cryocollimator prototype

Simulation of the proton collimation in SIS100

- Simulation tools used for the collimation design studies
 - Beam material interaction: FLUKA code
 - Particle tracking through the lattice: MAD-X code
 - Statistics: 10⁵ primary particles

- Multipass collimation efficiency
 - 4 GeV (injection) 29 GeV (extraction): eff. ≥ 99 %

Interaction of ions with the primary collimator

The same collimation system for protons and <u>fully stripped</u> ions in SIS100

Interaction of the fully stripped ions with the primary collimator - FLUKA code

 $\begin{bmatrix} 100 & SIS100 \\ 80 & -1^{1}H^{+} & 60 \\ 40 & -1^{12}C^{6+} & 60 \\ -1^{12}C^{6+} & -1^{12}Xe^{54+} & -1^{132}Xe^{54+} \\ -2^{238}U^{92+} & SIS18 \\ 10 & 0.5 & 1 & 10 & 30 \\ Kinetic energy [GeV/u] \end{bmatrix}$

Beam loss maps of the fully stripped ion beams

- Simulation tools
 - Beam material interaction: FLUKA code
 - Particle tracking through the lattice: MAD-X code
 - Statistics: 10⁵ primary particles

Beam loss maps include only primary ions (secondary fragments are excluded)

Collimation efficiency of the fully stripped ions

- Collimation efficiency of the fully stripped ions in SIS100 from proton up to uranium
- Decrease of the multipass efficiency starting from ⁴⁰Ar¹⁸⁺ is due to high momentum losses of heavy ions in the primary collimator.
- > The multipass efficiency is significantly improved with the help of the cryocollimators

Imperfections and lattice errors

- Impact parameter on the primary collimator is affected by the halo diffusion speed
 - Range of the calculated impact parameters: $10^{-3} 10^{1} \,\mu m$
- Closed orbit distortion due to misalignment of the magnets and field errors
 - Number of error seeds: ~100 (for each beam particle)
 - Misalignment of the magnets: 1 mm (rms)
 - Corrected COD in SIS100: ~1.6 mm
- G. Franchetti, I. Hofmann, S. Sorge, and V. Kapin, PAC09

Beam energies and momentum spread

- Collimation efficiency was calculated also for the intermediate beam energies $(B\rho = 50 \text{ Tm})$ and for the extraction energies $(B\rho = 100 \text{ Tm})$
- \succ Higher energies \rightarrow smaller scattering angles and relative momentum losses

Momentum spread

- Three values of $dp/p = 1 \times 10^{-3}$, 3×10^{-3} , and 5×10^{-3} (Gaussian distribution truncated at $\pm 2\sigma$)
- Almost no effect of the considered momentum spread values on the calculated collimation efficiency was observed

Inelastic nuclear interaction

- Two main interaction processes
 - Hadronic fragmentation or fission (through strong nuclear force) $_{b}^{a}X \rightarrow _{d}^{c}Y + _{f}^{e}Z + n + n + n + p + p + ...$
 - Electromagnetic dissociation (EMD) (through electromagnetic force)

 ${}^{a}_{b}X \rightarrow {}^{a-1}_{b}X + n \qquad \left(e.g. {}^{238}_{92}U \rightarrow {}^{237}_{92}U + n\right) \qquad H. H. Braun et al., Phys. Rev. ST AB 17, 021006 (2014)$

Products of the ²³⁸U inelastic nuclear interaction

- FLUKA simulation, 10⁷ primary particles
- The values are normalized by A/238

Products of the ⁴⁰Ar inelastic nuclear interaction

- FLUKA simulation, 10⁸ primary particles
- The values are normalized by A/40
- Cross section of the EMD is significantly lower than in case of ²³⁸U

Angular distribution of the ²³⁸U fragments

- FLUKA simulation, 10⁷ primary particles
- Momenta of the fragments per nucleon are very similar
- Standard deviation of the angular distribution is for the fragments higher than for the primary particles (except the very heavy EMD products e.g., ²³⁷U)

²³⁸U⁹²⁺ beam loss distribution including fragments

- Particle tracking performed for the fragments with the abundance > 10⁻⁴
- Motion of the fragments in the magnetic field differ from the primary ions depending on the changed A/Z ratio
- However, the heavy fragments coming from the EMD process have the magnetic rigidity very close to the rigidity of the primary ions

Collimation of the partially stripped ions

Intermediate charge-state ions will be accelerated in SIS100

 ${}^{238}_{92} U^{28+}, ~{}^{197}_{79} Au^{25+}, ~{}^{181}_{73} Ta^{24+}, ~{}^{132}_{54} Xe^{22+}, ~{}^{84}_{36} Kr^{17+}, ~{}^{20}_{10} Ne^{5+}$

[Ref] FAIR - Baseline Technical Report, GSI Darmstadt, (2006).

- Collimation concept
 - Stripping foil: $^{238}_{92}U^{28+}_{92} \rightarrow ^{238}_{92}U^{92+}_{92}$
 - Deflection by a beam optical element

Slow extraction area in SIS100

Charge state distribution after stripping

- Electron capture and electron loss equilibrium charge-state distribution
 - code GLOBAL (implemented also in LISE++) [Ref] C. Scheidenberger et al., NIMB 142 (1998) 441 •
 - Medium-Z materials (AI Cu) \rightarrow suitable for efficient stripping for wide range of primary • ions and beam energies (0.5 mm thick titanium foil is optimal for SIS100 beams)
 - Thermomechanical calculation for fast beam losses \rightarrow titanium can be melted •

0.5 mm thick stripping foil

Particle tracking of the stripped ions

Collimation using the hollow electron beam

- Based on electromagnetic field generated by the hollow electron beam (HEB)
- Halo particles experience nonlinear transverse kicks

$$\theta_{r} = \frac{1}{4\pi\varepsilon_{0}} \times \frac{2I_{r}L(1\pm\beta_{e}\beta_{b})}{r\beta_{e}\beta_{p}c^{2}(B\rho)_{b}} \begin{cases} 0 & r < r_{in} \\ \frac{r-r_{in}}{r_{out} - r_{in}} & r_{in} \le r \le r_{out} \end{cases}$$

$$I_{r} - \text{enclosed electron current} \\ L - \text{length of the e-lens} \\ r - \text{radial distance} \\ r_{in} - \text{inner radius} \\ r_{out} - \text{outer radius} \\ \beta_{e}, \beta_{b} - \text{beta rel. parameters} \\ B\rho - \text{magnetic rigidity} \end{cases}$$

$$IRefl G. Stancari et al. Phys. Rev. Lett. 107, 084802 (2011)$$

[Ref] G. Stancari et al., Phys. Rev. Lett. 107, 084802 (2011) [Ref] V. Shiltsev, Electron Lenses for Super-Colliders (book), ISBN 978-1-4939-3317-4

➤ Enhances diffusion speed of the halo particles → larger impact parameter

Hollow electron

Primary stage of the collimation system might be, for the partially stripped ions, replaced by the HEB (range of the 200MeV/u ²³⁸U in copper ~ 1.5 mm)

Beam core

Summary and conclusion

- Various aspects of the halo collimation in heavy ion synchrotron SIS100 were studied
- > Two stage collimation system applied on proton and fully stripped ion beams
- ➤ Fully stripped ions: the multipass collimation efficiency ≥ 99% from proton up to ²⁰Ne¹⁰⁺, with the cryocollimators up to ¹³²Xe⁵⁴⁺
- ➤ Multipass collimation efficiency of the ²³⁸U⁹²⁺ is equal to the singlepass one (75%) however with the cryocollimators ≥ 90%
- The collimation of partially stripped ions relies on the change of the charge state using a stripping foil
- The ions can be, after the stripping, effectively deflected by the quadrupole field towards the collimators
- > Fragmentation in the primary collimator has no significant effect on the efficiency
- Possible improvements using novel techniques are considered

Thank you for your attention