

Transverse coupling of ion beams from an ECR ion source

Yao Yang

Institute of Modern Physics, CAS, 730000, Lanzhou, China

Background

- Coupling induced during beam extraction
- Coupling effect of a solenoid
- Conclusions and Perspectives

Backgrounds

TRAL

Beam properties from ECR ion sources

SECRAL schematic view and the axial magnetic field distribution.

Thermal contribution:

$$\varepsilon_{ther} = 0.016 \cdot R_{extr} \cdot \sqrt{\frac{kT_i}{M/Q}}$$

Magnetic contribution:

$$\varepsilon_{mag} = 0.032 \cdot (R_{extr})^2 \cdot (\frac{B_{extr}}{M/Q})$$

For most ECR ion sources:

$$\mathcal{E}_{mag} >> \mathcal{E}_{ther}$$

Asymmetric beam and transverse coupling will make the beam emittance worse!

Projection RMS and eigen-emittances

Beam second moment matrix:

$$C = \begin{bmatrix} \langle xx \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle \\ \langle x'x \rangle & \langle x'x' \rangle & \langle x'y \rangle & \langle x'y' \rangle \\ \langle yx \rangle & \langle yx' \rangle & \langle yy \rangle & \langle yy' \rangle \\ \langle y'x \rangle & \langle y'x' \rangle & \langle y'y \rangle & \langle y'y' \rangle \end{bmatrix}$$

Projection RMS emittances:

$$\mathcal{E}_{x} = \sqrt{\langle xx \rangle \langle x'x' \rangle - \langle xx' \rangle^{2}}$$
$$\mathcal{E}_{y} = \sqrt{\langle yy \rangle \langle y'y' \rangle - \langle yy' \rangle^{2}}$$

4D-emittance:

$$\mathcal{E}_{4d} = \sqrt{\det(C)}$$

Coupling between horizontal and vertical planes results in:

$$\mathcal{E}_{4d} = \mathcal{E}_1 \cdot \mathcal{E}_2 \leq \mathcal{E}_x \cdot \mathcal{E}_y$$

equality just for zero inter-plane coupling moments.

Eigen-emittances:

$$\varepsilon_{1} = \frac{1}{2} \sqrt{-tr[(CJ)^{2}] + \sqrt{tr^{2}[(CJ)^{2}] - 16 \det(C)}}$$

$$\varepsilon_{2} = \frac{1}{2} \sqrt{-tr[(CJ)^{2}] - \sqrt{tr^{2}[(CJ)^{2}] - 16 \det(C)}}$$

$$J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

0 0 -1 0

Coupling induced during beam extraction

BEAM

Particles are extracted and accelerated in a semi-solenoid magnetic field.

Assuming a very short solenoid:

$$R_{out} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -\kappa & 0 \\ 0 & 0 & 1 & 0 \\ \kappa & 0 & 0 & 1 \end{bmatrix} \quad \kappa = \frac{B_{extr}}{2(B\rho)} \quad C_0 = \begin{bmatrix} \varepsilon\beta & 0 & 0 & 0 \\ 0 & \frac{\varepsilon}{\beta} & 0 & 0 \\ 0 & 0 & \varepsilon\beta & 0 \\ 0 & 0 & 0 & \frac{\varepsilon}{\beta} \end{bmatrix}$$

$$C_{1} = R_{out}C_{0}R_{out}^{T} = \begin{bmatrix} \varepsilon\beta & 0 & 0 & \kappa\varepsilon\beta \\ 0 & \frac{\varepsilon}{\beta} + \kappa^{2}\varepsilon\beta & -\kappa\varepsilon\beta & 0 \\ 0 & -k\varepsilon\beta & \varepsilon\beta & 0 \\ \kappa\varepsilon\beta & 0 & 0 & \frac{\varepsilon}{\beta} + \kappa^{2}\varepsilon\beta \end{bmatrix}$$

$$\varepsilon_x = \varepsilon_y = \sqrt{\varepsilon \beta (\frac{\varepsilon}{\beta} + \kappa^2 \varepsilon \beta)} \quad \varepsilon_{1,2} = \varepsilon_x \pm \kappa \varepsilon \beta$$

Ion beam is transversely coupled!

Beam extraction simulation for SECRAL

¹²⁹Xe²⁹⁺, 25 kV, B_{ext}=1.35 T @ IBsimu in the present of the magnetic field

Y. Yang, HB2016, Sweden 8

Beam emittances VS B_{ext}

- The projection emittances do not increase with the magnetic field strength proportionally as expected;
- Optimal field (B_{extr} =2.03 T).
 - $\varepsilon_{x,y}$ reaches minimum;
 - the value of $\varepsilon_x^* \varepsilon_y$ is closest to $\varepsilon_1^* \varepsilon_2$;
 - the difference between ε_1 and ε_2 is smallest.

The coupling is relatively weak.

B_{ext} effect on beam formation

the beam formation in the extraction region.

Beam emittances VS B_{ext}

Emittance measurement for RIKEN 28GHz SC-ECRIS

Presented in ICIS'15 by Y. Higurashi from RIKEN

EM Slit measurement			OPERA calculation			
Н	V	4D	Н	V	4D	
290	156	1567	210	172	1459	

The emittance with lower B_{ext} is larger than that with higher B_{ext} .

EM Slit measurement			OPERA calculation			
Н	V	4D	Н	V	4D	
377	214	3476	249	201	2755	

Under different extraction voltages

• The 4-D emittance decreases with increasing the extraction magnetic field.

the beam size at the location of the grounded electrode is focused to be smaller with a larger magnetic field, helping to avoid the large-radius aberration in the einzel lens and improve the beam quality.

Coupling effect of a solenoid

Beam emittance measurement for SECRAL

Transfer matrix of a solenoid

$$R_{sol} = \begin{bmatrix} \cos^{2}(kz) & \sin(2kz)/2k & \sin(2kz)/2 & \sin^{2}(kz)/k \\ -k\sin(2kz)/2 & \cos^{2}(kz) & -k\sin^{2}(kz) & \sin(2kz)/2 \\ -\sin(2kz)/2 & -\sin^{2}(kz)/k & \cos^{2}(kz) & \sin(2kz)/2k \\ k\sin^{2}(kz) & -\sin(2kz)/2 & -k\sin(2kz)/2 & \cos^{2}(kz) \end{bmatrix}$$

$$R_{sol} = \begin{bmatrix} \cos(kz) & \sin(kz)/k & 0 \\ -k\sin(kz) & \cos(kz) & 0 \\ 0 & \cos(kz) & \sin(kz)/k \\ 0 & -k\sin(kz) & \cos(kz) \end{bmatrix} \begin{bmatrix} \cos(kz) & 0 & \sin(kz) & 0 \\ 0 & \cos(kz) & 0 & \sin(kz) \\ -\sin(kz) & 0 & \cos(kz) & 0 \\ 0 & -\sin(kz) & 0 & \cos(kz) \end{bmatrix}$$
Focusing
$$k = \frac{1}{2} B_{0} / B \rho_{s}$$

Beam rotation angle in a solenoid: $\Theta = \kappa L_{eff} = \frac{B_{max}}{2(B\rho)}L_{eff}$

Non-round beam through a solenoid

Coupling effect of a solenoid

The rotation effect of a solenoid field brings a periodic coupling to a non-round beam.

When $\Theta = n \cdot \frac{\pi}{2}$ $n = 0, \pm 1, \pm 2, \pm 3, \cdots$ the beam is uncoupled.

Horizontal and vertical planes exchange while $n = \pm 1, \pm 3, \pm 5, \cdots$

With regard to the experimental result with SECRAL:

- Ion beam extracted from the ECR ion source is not round.
- The solenoid after the ion source could disentangle the coupling by compensating the rotation caused by the semi-solenoid field in the extraction region.
- However, the coupling induced during beam extraction can not be removed unless a skew quadrupole (or a skew triplet) is used.

- A strong coupling in the transverse space will be induced through the semi-solenoid field in the extraction region.
- The magnetic field in the extraction region can also determine the beam emittances and the transverse coupling by affecting the beam formation.
- A solenoid can lead to periodic coupling for an initially nonround beam due to its rotation effect.

- Experiments and test on the emittance with a pepper-pot scanner are essential.
- Decoupling method should be introduced in the beam matching from the ion source to the downstream accelerators (RFQs, cyclotrons) to reduce the projection emittances.
- The understanding of the ion source beam quality will be very helpful to the design of the ECR beamlines.

Thanks for your attention!

谢谢!