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Space-Charge Compensation

Accumulation of secondary particles
of opposite charge in the beam
potential

“Traditional” treatment: Constant
compensation factor

Include secondary particles in self-
consistent simulation

(Computational) challenges
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Measured beam distribution after compen-
sated transport through 2 solenoids [1]

Long simulation times
tcompensation = L = 17us
vpo
120 keV p*, N,, p=10-3 Pa

Magnetic fields

t _cmm 71 B=05T
cyclotron — qB - pS, - Y-

Which effects to include?

[1] P. Grof3, Untersuchungen zum Emittanzwachstum intensiver

lonenstrahlen bei teilweiser Kompensation der Raumladung, Dissertation, Frankfurt 2000



Outline

* Motivation
e Simulation model

e Results for a drift section

Time development, Charge densities, Velocity distributions

* ... how to get them by simpler means

Poisson-Boltzmann equation

e ...and what is wrong with them

Stochastical heating



Simulation model

Solution of the Vlasov-Poisson system  df p of + o5t of
by introducing simulation particles ot  m dq dp

Calculate «--
/ forces \
Insert new particles Move particles
/ Output «—— Particle losses

Code used: bender [1]

Null collision model [2] using single-differential cross sections for
proton & electron impact ionization [3,4]

FFT or finite difference 3d space charge solver / Verlet integration

[1] D. Noll, M. Droba, O. Meusel, U. Ratzinger, K. Schulte, C. Wiesner — The Particle-in-Cell Code bender and Its Application to Non-Relativistic Beam
Transport, HB2014, WEO4LRO02.

[2] Rudd, Kim, Madison, Gay - Electron production in proton collisions with atoms and molecules: energy distributions, Rev. Mod. Phys. 64, 441-490 992).
[3] Kim, Rudd — Binary-Encounter-Dipole Model for Electron-Impact lonization, Physical Review A, 50(5), 3954.

[4] Vahedi, Surendra — A Monte Carlo Collision Model for the Particle-in-Cell method, Computer Physics Communications (1995).



Space-Charge Compensation

Model system

* Which system to simulate?
Should be as simple as

possible: 20
— Drift section: no magnetic 15 —i
fields 10
— No particle losses .
— Argon as residual gas
° 0 0.1 0.2 0.3 0.4 0.5

* High ionization cross

Proton density without compensation

r [mm]

section 2 [
* No dissociation fragments
* Good data availability Proton density at 10 mA

(with 90% ,,compensation®)

20

100 mA, 120 keV proton beam
10 mbar Argon background 15
-1500 V repeller voltage 10
Emsnorm = 0.4 mm mrad, a=7.4, f=1.89 m

5
1000 macroparticles per step
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0.4 mm mesh resolution
50 ps time step 2 [m]



Results for the Drift System

Charge densities

B

P=Pp+tPe-+PAr+
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Results for the Drift System

Charge densities

20X P Ars P=Pp+tPe-+PAr+

Double layer
formation
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Results for the Drift System

Charge densities

Less compensation at
beam edge

P=Pp+tPe-+PAr+
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Results for the Drift System

Charge densities

Hollow beam distribution

P=Pp+tPe-+PAr+
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Results for the Drift System

Charge densities

| P=Ppr+Pe+PArs

Density [10"° m~3]



Probability [arb. unit]

Particle density [1/eV]

Results for the Drift System

v, (T, =309 eV)
aussian fit v,

229cm<z<25cm, 8mm<r<10mm, Ty = 14.0eV —
229cm<z<25¢cm,r<1mm, Tg =324eV —
83cm<z<104cm,r<2mm, Ty =242eV —
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Velocity distribution

e Gaussian velocity
distributions everywhere

— Tx,y =T,
- Tx,y = x,y(r: Z)

— Deviation from Gaussians for
large radii

— Remain constant in
equilibrium
* Approximately follow a
Boltzmann distribution

f(r.;p) = fo eXp(_k:biT)
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Poisson-Boltzmann Model

122 _ 'pﬂ grong simu;agio'n; 140 e Radial distribution:
E -Pe(r) (from simulation — 120 . ~ _
g R — ] o S = foexp(=ep(r)/kT)
= 120 pg=0.7 uC/m = . . . .
S ol fo1ssev | g = * T, pydetermine distribution
5 ol 18 5 e+ Compensation electrons
g w0 L 1% = behave like a non-neutral
O 20p 1% plasma confined in the
0 = 0 .
0 5 10 15 20 beam potential.

Radius [mm]

If we know T and p,, can we find @(r), f(r) directly?

2
. P q (pe(r) + @ext(r))
Jo OXp( zmka) P ( ko T

V20.(r) = -4 / f(r,p)dv = _&CXP(_@(T))

12



ne(r) / Npeam
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Poisson-Boltzmann Model

Solutionsinr
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Poisson-Boltzmann Model

Emittance growth

KV distribution Gaussian distribution
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50 cm beam transport, 120 keV, 50 mA
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Results for the Drift System

Comparison to bender simulation
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Origin of the ,,Thermalization”

* Energy of random electron tracks over time:

t/ Tooe

Time [us]
« Random walk until H > 0, then get gradually lost
* Is energy conserved in the simulation?



Origin of the ,,Thermalization”

Stochastic heating in a test system

H of
f(r,p) = fo OXP(——) is a solution of —= + ——=
kpnT ot
1 =0
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* Stochastic heating [1]:
—  Error” field with 6E = 0,8E2 # 0

AT =Tipq — T, =1q—2WAt2
1+1 L 2 m
— Effect from particle statistics:

|6E| -~ N~1/2

[1] Hockney, Eastwood — Computer Simulation Using Particles, 1989

Incr. of tot. energy per particle [eV]

Heating rate [keV/s]

| N, = 256k, dE/dt = 8.6 keV/s
N, = 128k, dE/dt = 12.6 keV/s
- R, = 64k, dE/dt = 20.5 keV/s ——
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Origin of the ,,Thermalization”

Thermalization
Dependence on the number

of simulation particles
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Temperatures linked to
compensation degree

Not responsible:

— Secondary electron
energy distribution

Temperature [eV]

— Coulomb collisions

T | | 60
100000
Particles per macroparticle

Hypothesis:

Stochastical heating

y :

Particle losses compensate
increased energy contribution

Further indications:
— 1d simulations show almost no

y2temperature”
\1' — Simulation with static beam show
Gaussian distributions & lower temperatures

n <100 %

18

npart [O/"]



Conclusions & Outlook

e Space-charge compensation was included in a self-
consistent way
— Electrons follow a Boltzmann distribution

— The dynamics are completely determined by the plasma
nature of the compensation electrons

— Hypothesis was formed: thermalization is a result of
stochastical heating

* Before physical heating processes can be included

82

2
n
_ beamYbeam ln(A) [1] > =60keV/s
47'[80 me Vbeam T=20 eV

numerical effects need to be removed... how?

PHeating =

[1] R. Dolling, Raumladungskompensation driftender intensiver Strahlen
niederenergetischer lonen und Techniken zu ihrer Vermessung, Dissertation, Goethe Universitat Frankfurt am Main 2000



Conclusions & Outlook

e Space-charge compensation was included in a self-
consistent way

— Electrons follow a Boltzmann distribution

— The dynamics are completely determined by the plasma
nature of the compensation electrons

— Hypothesis was formed: thermalization is a result of
stochastical heating

* Before physical heating processes can be included
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PHeating

Thank you for your attention!





